Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Upload 7 files
Browse files- Snapshot_20250116T005401202Z.jpg +0 -0
 - attention_processor.py +141 -0
 - infer_flux_ipa_siglip.py +190 -0
 - pipeline_flux_ipa.py +874 -0
 - pipeline_stable_diffusion_3_ipa.py +1235 -0
 - pre-requirements.txt +1 -0
 - transformer_flux.py +567 -0
 
    	
        Snapshot_20250116T005401202Z.jpg
    ADDED
    
    
											 
									 | 
									
								
    	
        attention_processor.py
    ADDED
    
    | 
         @@ -0,0 +1,141 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 4 | 
         
            +
            from diffusers.models.normalization import FP32LayerNorm, RMSNorm
         
     | 
| 5 | 
         
            +
            from typing import Callable, List, Optional, Tuple, Union
         
     | 
| 6 | 
         
            +
            import math
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            import numpy as np
         
     | 
| 9 | 
         
            +
            from PIL import Image
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            class IPAFluxAttnProcessor2_0(nn.Module):
         
     | 
| 13 | 
         
            +
                """Attention processor used typically in processing the SD3-like self-attention projections."""
         
     | 
| 14 | 
         
            +
                
         
     | 
| 15 | 
         
            +
                def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
         
     | 
| 16 | 
         
            +
                    super().__init__()
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
                    self.hidden_size = hidden_size # 3072
         
     | 
| 19 | 
         
            +
                    self.cross_attention_dim = cross_attention_dim # 4096
         
     | 
| 20 | 
         
            +
                    self.scale = scale
         
     | 
| 21 | 
         
            +
                    self.num_tokens = num_tokens
         
     | 
| 22 | 
         
            +
                    
         
     | 
| 23 | 
         
            +
                    self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
         
     | 
| 24 | 
         
            +
                    self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
         
     | 
| 25 | 
         
            +
                    
         
     | 
| 26 | 
         
            +
                    self.norm_added_k = RMSNorm(128, eps=1e-5, elementwise_affine=False)
         
     | 
| 27 | 
         
            +
                    #self.norm_added_v = RMSNorm(128, eps=1e-5, elementwise_affine=False)
         
     | 
| 28 | 
         
            +
                        
         
     | 
| 29 | 
         
            +
                def __call__(
         
     | 
| 30 | 
         
            +
                    self,
         
     | 
| 31 | 
         
            +
                    attn,
         
     | 
| 32 | 
         
            +
                    hidden_states: torch.FloatTensor,
         
     | 
| 33 | 
         
            +
                    image_emb: torch.FloatTensor,
         
     | 
| 34 | 
         
            +
                    encoder_hidden_states: torch.FloatTensor = None,
         
     | 
| 35 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 36 | 
         
            +
                    image_rotary_emb: Optional[torch.Tensor] = None,
         
     | 
| 37 | 
         
            +
                    mask: Optional[torch.Tensor] = None,
         
     | 
| 38 | 
         
            +
                ) -> torch.FloatTensor:
         
     | 
| 39 | 
         
            +
                    batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
         
     | 
| 40 | 
         
            +
                            
         
     | 
| 41 | 
         
            +
                    # `sample` projections.
         
     | 
| 42 | 
         
            +
                    query = attn.to_q(hidden_states)
         
     | 
| 43 | 
         
            +
                    key = attn.to_k(hidden_states)
         
     | 
| 44 | 
         
            +
                    value = attn.to_v(hidden_states)
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                    inner_dim = key.shape[-1]
         
     | 
| 47 | 
         
            +
                    head_dim = inner_dim // attn.heads
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                    query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # torch.Size([1, 24, 4800, 128])
         
     | 
| 50 | 
         
            +
                    key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         
     | 
| 51 | 
         
            +
                    value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                    if attn.norm_q is not None:
         
     | 
| 54 | 
         
            +
                        query = attn.norm_q(query)
         
     | 
| 55 | 
         
            +
                    if attn.norm_k is not None:
         
     | 
| 56 | 
         
            +
                        key = attn.norm_k(key)
         
     | 
| 57 | 
         
            +
                    
         
     | 
| 58 | 
         
            +
                    if image_emb is not None:
         
     | 
| 59 | 
         
            +
                        # `ip-adapter` projections
         
     | 
| 60 | 
         
            +
                        ip_hidden_states = image_emb
         
     | 
| 61 | 
         
            +
                        ip_hidden_states_key_proj = self.to_k_ip(ip_hidden_states)
         
     | 
| 62 | 
         
            +
                        ip_hidden_states_value_proj = self.to_v_ip(ip_hidden_states)
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                        ip_hidden_states_key_proj = ip_hidden_states_key_proj.view(
         
     | 
| 65 | 
         
            +
                            batch_size, -1, attn.heads, head_dim
         
     | 
| 66 | 
         
            +
                        ).transpose(1, 2)
         
     | 
| 67 | 
         
            +
                        ip_hidden_states_value_proj = ip_hidden_states_value_proj.view(
         
     | 
| 68 | 
         
            +
                            batch_size, -1, attn.heads, head_dim
         
     | 
| 69 | 
         
            +
                        ).transpose(1, 2)
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                        ip_hidden_states_key_proj = self.norm_added_k(ip_hidden_states_key_proj)
         
     | 
| 72 | 
         
            +
                        #ip_hidden_states_valye_proj = self.norm_added_v(ip_hidden_states_value_proj)
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                        ip_hidden_states = F.scaled_dot_product_attention(query, 
         
     | 
| 75 | 
         
            +
                                                                          ip_hidden_states_key_proj, 
         
     | 
| 76 | 
         
            +
                                                                          ip_hidden_states_value_proj, 
         
     | 
| 77 | 
         
            +
                                                                          dropout_p=0.0, is_causal=False)
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                        ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
         
     | 
| 80 | 
         
            +
                        ip_hidden_states = ip_hidden_states.to(query.dtype)
         
     | 
| 81 | 
         
            +
                                    
         
     | 
| 82 | 
         
            +
                    # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
         
     | 
| 83 | 
         
            +
                    if encoder_hidden_states is not None:
         
     | 
| 84 | 
         
            +
                                    
         
     | 
| 85 | 
         
            +
                        # `context` projections.
         
     | 
| 86 | 
         
            +
                        encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
         
     | 
| 87 | 
         
            +
                        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
         
     | 
| 88 | 
         
            +
                        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                        encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
         
     | 
| 91 | 
         
            +
                            batch_size, -1, attn.heads, head_dim
         
     | 
| 92 | 
         
            +
                        ).transpose(1, 2)
         
     | 
| 93 | 
         
            +
                        encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
         
     | 
| 94 | 
         
            +
                            batch_size, -1, attn.heads, head_dim
         
     | 
| 95 | 
         
            +
                        ).transpose(1, 2)
         
     | 
| 96 | 
         
            +
                        encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
         
     | 
| 97 | 
         
            +
                            batch_size, -1, attn.heads, head_dim
         
     | 
| 98 | 
         
            +
                        ).transpose(1, 2)
         
     | 
| 99 | 
         
            +
                        
         
     | 
| 100 | 
         
            +
                        if attn.norm_added_q is not None:
         
     | 
| 101 | 
         
            +
                            encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
         
     | 
| 102 | 
         
            +
                        if attn.norm_added_k is not None:
         
     | 
| 103 | 
         
            +
                            encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
         
     | 
| 104 | 
         
            +
                        
         
     | 
| 105 | 
         
            +
                        # attention
         
     | 
| 106 | 
         
            +
                        query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
         
     | 
| 107 | 
         
            +
                        key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
         
     | 
| 108 | 
         
            +
                        value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) # (512+3840,128)
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                    if image_rotary_emb is not None:
         
     | 
| 111 | 
         
            +
                        from diffusers.models.embeddings import apply_rotary_emb
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                        query = apply_rotary_emb(query, image_rotary_emb)
         
     | 
| 114 | 
         
            +
                        key = apply_rotary_emb(key, image_rotary_emb)
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                    hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
         
     | 
| 117 | 
         
            +
                    
         
     | 
| 118 | 
         
            +
                    hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
         
     | 
| 119 | 
         
            +
                    hidden_states = hidden_states.to(query.dtype)
         
     | 
| 120 | 
         
            +
                    
         
     | 
| 121 | 
         
            +
                    if encoder_hidden_states is not None:
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                        encoder_hidden_states, hidden_states = (
         
     | 
| 124 | 
         
            +
                            hidden_states[:, : encoder_hidden_states.shape[1]],
         
     | 
| 125 | 
         
            +
                            hidden_states[:, encoder_hidden_states.shape[1] :],
         
     | 
| 126 | 
         
            +
                        )
         
     | 
| 127 | 
         
            +
                        if image_emb is not None:
         
     | 
| 128 | 
         
            +
                            hidden_states = hidden_states + self.scale * ip_hidden_states
         
     | 
| 129 | 
         
            +
                                    
         
     | 
| 130 | 
         
            +
                        # linear proj
         
     | 
| 131 | 
         
            +
                        hidden_states = attn.to_out[0](hidden_states)
         
     | 
| 132 | 
         
            +
                        # dropout
         
     | 
| 133 | 
         
            +
                        hidden_states = attn.to_out[1](hidden_states)
         
     | 
| 134 | 
         
            +
                        encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
         
     | 
| 135 | 
         
            +
                        
         
     | 
| 136 | 
         
            +
                        return hidden_states, encoder_hidden_states
         
     | 
| 137 | 
         
            +
                    else:
         
     | 
| 138 | 
         
            +
                        if image_emb is not None:
         
     | 
| 139 | 
         
            +
                            hidden_states = hidden_states + self.scale * ip_hidden_states
         
     | 
| 140 | 
         
            +
                        
         
     | 
| 141 | 
         
            +
                        return hidden_states
         
     | 
    	
        infer_flux_ipa_siglip.py
    ADDED
    
    | 
         @@ -0,0 +1,190 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import glob
         
     | 
| 3 | 
         
            +
            import numpy as np
         
     | 
| 4 | 
         
            +
            from PIL import Image
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            import torch
         
     | 
| 7 | 
         
            +
            import torch.nn as nn
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from pipeline_flux_ipa import FluxPipeline
         
     | 
| 10 | 
         
            +
            from transformer_flux import FluxTransformer2DModel
         
     | 
| 11 | 
         
            +
            from attention_processor import IPAFluxAttnProcessor2_0
         
     | 
| 12 | 
         
            +
            from transformers import AutoProcessor, SiglipVisionModel
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            def resize_img(input_image, max_side=1280, min_side=1024, size=None, 
         
     | 
| 15 | 
         
            +
                           pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
                w, h = input_image.size
         
     | 
| 18 | 
         
            +
                if size is not None:
         
     | 
| 19 | 
         
            +
                    w_resize_new, h_resize_new = size
         
     | 
| 20 | 
         
            +
                else:
         
     | 
| 21 | 
         
            +
                    ratio = min_side / min(h, w)
         
     | 
| 22 | 
         
            +
                    w, h = round(ratio*w), round(ratio*h)
         
     | 
| 23 | 
         
            +
                    ratio = max_side / max(h, w)
         
     | 
| 24 | 
         
            +
                    input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
         
     | 
| 25 | 
         
            +
                    w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
         
     | 
| 26 | 
         
            +
                    h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
         
     | 
| 27 | 
         
            +
                input_image = input_image.resize([w_resize_new, h_resize_new], mode)
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                if pad_to_max_side:
         
     | 
| 30 | 
         
            +
                    res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
         
     | 
| 31 | 
         
            +
                    offset_x = (max_side - w_resize_new) // 2
         
     | 
| 32 | 
         
            +
                    offset_y = (max_side - h_resize_new) // 2
         
     | 
| 33 | 
         
            +
                    res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
         
     | 
| 34 | 
         
            +
                    input_image = Image.fromarray(res)
         
     | 
| 35 | 
         
            +
                return input_image
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            class MLPProjModel(torch.nn.Module):
         
     | 
| 38 | 
         
            +
                def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4):
         
     | 
| 39 | 
         
            +
                    super().__init__()
         
     | 
| 40 | 
         
            +
                    
         
     | 
| 41 | 
         
            +
                    self.cross_attention_dim = cross_attention_dim
         
     | 
| 42 | 
         
            +
                    self.num_tokens = num_tokens
         
     | 
| 43 | 
         
            +
                    
         
     | 
| 44 | 
         
            +
                    self.proj = torch.nn.Sequential(
         
     | 
| 45 | 
         
            +
                        torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
         
     | 
| 46 | 
         
            +
                        torch.nn.GELU(),
         
     | 
| 47 | 
         
            +
                        torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
         
     | 
| 48 | 
         
            +
                    )
         
     | 
| 49 | 
         
            +
                    self.norm = torch.nn.LayerNorm(cross_attention_dim)
         
     | 
| 50 | 
         
            +
                    
         
     | 
| 51 | 
         
            +
                def forward(self, id_embeds):
         
     | 
| 52 | 
         
            +
                    x = self.proj(id_embeds)
         
     | 
| 53 | 
         
            +
                    x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
         
     | 
| 54 | 
         
            +
                    x = self.norm(x)
         
     | 
| 55 | 
         
            +
                    return x
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
            class IPAdapter:
         
     | 
| 58 | 
         
            +
                def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4):
         
     | 
| 59 | 
         
            +
                    self.device = device
         
     | 
| 60 | 
         
            +
                    self.image_encoder_path = image_encoder_path
         
     | 
| 61 | 
         
            +
                    self.ip_ckpt = ip_ckpt
         
     | 
| 62 | 
         
            +
                    self.num_tokens = num_tokens
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    self.pipe = sd_pipe.to(self.device)
         
     | 
| 65 | 
         
            +
                    self.set_ip_adapter()
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                    # load image encoder
         
     | 
| 68 | 
         
            +
                    self.image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path).to(self.device, dtype=torch.bfloat16)
         
     | 
| 69 | 
         
            +
                    self.clip_image_processor = AutoProcessor.from_pretrained(self.image_encoder_path)
         
     | 
| 70 | 
         
            +
                    
         
     | 
| 71 | 
         
            +
                    # image proj model
         
     | 
| 72 | 
         
            +
                    self.image_proj_model = self.init_proj()
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                    self.load_ip_adapter()
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                def init_proj(self):
         
     | 
| 77 | 
         
            +
                    image_proj_model = MLPProjModel(
         
     | 
| 78 | 
         
            +
                        cross_attention_dim=self.pipe.transformer.config.joint_attention_dim, # 4096
         
     | 
| 79 | 
         
            +
                        id_embeddings_dim=1152, 
         
     | 
| 80 | 
         
            +
                        num_tokens=self.num_tokens,
         
     | 
| 81 | 
         
            +
                    ).to(self.device, dtype=torch.bfloat16)
         
     | 
| 82 | 
         
            +
                    
         
     | 
| 83 | 
         
            +
                    return image_proj_model
         
     | 
| 84 | 
         
            +
                
         
     | 
| 85 | 
         
            +
                def set_ip_adapter(self):
         
     | 
| 86 | 
         
            +
                    transformer = self.pipe.transformer
         
     | 
| 87 | 
         
            +
                    ip_attn_procs = {} # 19+38=57
         
     | 
| 88 | 
         
            +
                    for name in transformer.attn_processors.keys():
         
     | 
| 89 | 
         
            +
                        if name.startswith("transformer_blocks.") or name.startswith("single_transformer_blocks"):
         
     | 
| 90 | 
         
            +
                            ip_attn_procs[name] = IPAFluxAttnProcessor2_0(
         
     | 
| 91 | 
         
            +
                                hidden_size=transformer.config.num_attention_heads * transformer.config.attention_head_dim,
         
     | 
| 92 | 
         
            +
                                cross_attention_dim=transformer.config.joint_attention_dim,
         
     | 
| 93 | 
         
            +
                                num_tokens=self.num_tokens,
         
     | 
| 94 | 
         
            +
                            ).to(self.device, dtype=torch.bfloat16)
         
     | 
| 95 | 
         
            +
                        else:
         
     | 
| 96 | 
         
            +
                            ip_attn_procs[name] = transformer.attn_processors[name]
         
     | 
| 97 | 
         
            +
                
         
     | 
| 98 | 
         
            +
                    transformer.set_attn_processor(ip_attn_procs)
         
     | 
| 99 | 
         
            +
                
         
     | 
| 100 | 
         
            +
                def load_ip_adapter(self):
         
     | 
| 101 | 
         
            +
                    state_dict = torch.load(self.ip_ckpt, map_location="cpu")
         
     | 
| 102 | 
         
            +
                    self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=True)
         
     | 
| 103 | 
         
            +
                    ip_layers = torch.nn.ModuleList(self.pipe.transformer.attn_processors.values())
         
     | 
| 104 | 
         
            +
                    ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                @torch.inference_mode()
         
     | 
| 107 | 
         
            +
                def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
         
     | 
| 108 | 
         
            +
                    if pil_image is not None:
         
     | 
| 109 | 
         
            +
                        if isinstance(pil_image, Image.Image):
         
     | 
| 110 | 
         
            +
                            pil_image = [pil_image]
         
     | 
| 111 | 
         
            +
                        clip_image = self.clip_image_processor(images=pil_image, return_tensors="pt").pixel_values
         
     | 
| 112 | 
         
            +
                        clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=self.image_encoder.dtype)).pooler_output
         
     | 
| 113 | 
         
            +
                        clip_image_embeds = clip_image_embeds.to(dtype=torch.bfloat16)
         
     | 
| 114 | 
         
            +
                    else:
         
     | 
| 115 | 
         
            +
                        clip_image_embeds = clip_image_embeds.to(self.device, dtype=torch.bfloat16)
         
     | 
| 116 | 
         
            +
                    image_prompt_embeds = self.image_proj_model(clip_image_embeds)
         
     | 
| 117 | 
         
            +
                    return image_prompt_embeds
         
     | 
| 118 | 
         
            +
                
         
     | 
| 119 | 
         
            +
                def set_scale(self, scale):
         
     | 
| 120 | 
         
            +
                    for attn_processor in self.pipe.transformer.attn_processors.values():
         
     | 
| 121 | 
         
            +
                        if isinstance(attn_processor, IPAFluxAttnProcessor2_0):
         
     | 
| 122 | 
         
            +
                            attn_processor.scale = scale
         
     | 
| 123 | 
         
            +
                
         
     | 
| 124 | 
         
            +
                def generate(
         
     | 
| 125 | 
         
            +
                    self,
         
     | 
| 126 | 
         
            +
                    pil_image=None,
         
     | 
| 127 | 
         
            +
                    clip_image_embeds=None,
         
     | 
| 128 | 
         
            +
                    prompt=None,
         
     | 
| 129 | 
         
            +
                    scale=1.0,
         
     | 
| 130 | 
         
            +
                    num_samples=1,
         
     | 
| 131 | 
         
            +
                    seed=None,
         
     | 
| 132 | 
         
            +
                    guidance_scale=3.5,
         
     | 
| 133 | 
         
            +
                    num_inference_steps=24,
         
     | 
| 134 | 
         
            +
                    **kwargs,
         
     | 
| 135 | 
         
            +
                ):
         
     | 
| 136 | 
         
            +
                    self.set_scale(scale)
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                    image_prompt_embeds = self.get_image_embeds(
         
     | 
| 139 | 
         
            +
                        pil_image=pil_image, clip_image_embeds=clip_image_embeds
         
     | 
| 140 | 
         
            +
                    )
         
     | 
| 141 | 
         
            +
                    
         
     | 
| 142 | 
         
            +
                    if seed is None:
         
     | 
| 143 | 
         
            +
                        generator = None
         
     | 
| 144 | 
         
            +
                    else:
         
     | 
| 145 | 
         
            +
                        generator = torch.Generator(self.device).manual_seed(seed)
         
     | 
| 146 | 
         
            +
                    
         
     | 
| 147 | 
         
            +
                    images = self.pipe(
         
     | 
| 148 | 
         
            +
                        prompt=prompt,
         
     | 
| 149 | 
         
            +
                        image_emb=image_prompt_embeds,
         
     | 
| 150 | 
         
            +
                        guidance_scale=guidance_scale,
         
     | 
| 151 | 
         
            +
                        num_inference_steps=num_inference_steps,
         
     | 
| 152 | 
         
            +
                        generator=generator,
         
     | 
| 153 | 
         
            +
                        **kwargs,
         
     | 
| 154 | 
         
            +
                    ).images
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                    return images
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
            if __name__ == '__main__':
         
     | 
| 160 | 
         
            +
                
         
     | 
| 161 | 
         
            +
                model_path = "black-forest-labs/FLUX.1-dev"
         
     | 
| 162 | 
         
            +
                image_encoder_path = "google/siglip-so400m-patch14-384"
         
     | 
| 163 | 
         
            +
                ipadapter_path = "./ip-adapter.bin"
         
     | 
| 164 | 
         
            +
                    
         
     | 
| 165 | 
         
            +
                transformer = FluxTransformer2DModel.from_pretrained(
         
     | 
| 166 | 
         
            +
                    model_path, subfolder="transformer", torch_dtype=torch.bfloat16
         
     | 
| 167 | 
         
            +
                )
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                pipe = FluxPipeline.from_pretrained(
         
     | 
| 170 | 
         
            +
                    model_path, transformer=transformer, torch_dtype=torch.bfloat16
         
     | 
| 171 | 
         
            +
                )
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                ip_model = IPAdapter(pipe, image_encoder_path, ipadapter_path, device="cuda", num_tokens=128)
         
     | 
| 174 | 
         
            +
                
         
     | 
| 175 | 
         
            +
                image_dir = "./assets/images/2.jpg"
         
     | 
| 176 | 
         
            +
                image_name = image_dir.split("/")[-1]
         
     | 
| 177 | 
         
            +
                image = Image.open(image_dir).convert("RGB")
         
     | 
| 178 | 
         
            +
                image = resize_img(image)
         
     | 
| 179 | 
         
            +
                
         
     | 
| 180 | 
         
            +
                prompt = "a young girl"
         
     | 
| 181 | 
         
            +
                
         
     | 
| 182 | 
         
            +
                images = ip_model.generate(
         
     | 
| 183 | 
         
            +
                    pil_image=image, 
         
     | 
| 184 | 
         
            +
                    prompt=prompt,
         
     | 
| 185 | 
         
            +
                    scale=0.7,
         
     | 
| 186 | 
         
            +
                    width=960, height=1280,
         
     | 
| 187 | 
         
            +
                    seed=42
         
     | 
| 188 | 
         
            +
                )
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
                images[0].save(f"results/{image_name}")
         
     | 
    	
        pipeline_flux_ipa.py
    ADDED
    
    | 
         @@ -0,0 +1,874 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            # limitations under the License.
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            import inspect
         
     | 
| 16 | 
         
            +
            from typing import Any, Callable, Dict, List, Optional, Union
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            import numpy as np
         
     | 
| 19 | 
         
            +
            import torch
         
     | 
| 20 | 
         
            +
            from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            from diffusers.image_processor import VaeImageProcessor
         
     | 
| 23 | 
         
            +
            from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin
         
     | 
| 24 | 
         
            +
            from diffusers.models.autoencoders import AutoencoderKL
         
     | 
| 25 | 
         
            +
            from diffusers.models.transformers import FluxTransformer2DModel
         
     | 
| 26 | 
         
            +
            from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
         
     | 
| 27 | 
         
            +
            from diffusers.utils import (
         
     | 
| 28 | 
         
            +
                USE_PEFT_BACKEND,
         
     | 
| 29 | 
         
            +
                is_torch_xla_available,
         
     | 
| 30 | 
         
            +
                logging,
         
     | 
| 31 | 
         
            +
                replace_example_docstring,
         
     | 
| 32 | 
         
            +
                scale_lora_layers,
         
     | 
| 33 | 
         
            +
                unscale_lora_layers,
         
     | 
| 34 | 
         
            +
            )
         
     | 
| 35 | 
         
            +
            from diffusers.utils.torch_utils import randn_tensor
         
     | 
| 36 | 
         
            +
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline
         
     | 
| 37 | 
         
            +
            from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
            if is_torch_xla_available():
         
     | 
| 41 | 
         
            +
                import torch_xla.core.xla_model as xm
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                XLA_AVAILABLE = True
         
     | 
| 44 | 
         
            +
            else:
         
     | 
| 45 | 
         
            +
                XLA_AVAILABLE = False
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            from PIL import Image
         
     | 
| 48 | 
         
            +
            import numpy as np
         
     | 
| 49 | 
         
            +
            import torch
         
     | 
| 50 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            EXAMPLE_DOC_STRING = """
         
     | 
| 55 | 
         
            +
                Examples:
         
     | 
| 56 | 
         
            +
                    ```py
         
     | 
| 57 | 
         
            +
                    >>> import torch
         
     | 
| 58 | 
         
            +
                    >>> from diffusers import FluxPipeline
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                    >>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
         
     | 
| 61 | 
         
            +
                    >>> pipe.to("cuda")
         
     | 
| 62 | 
         
            +
                    >>> prompt = "A cat holding a sign that says hello world"
         
     | 
| 63 | 
         
            +
                    >>> # Depending on the variant being used, the pipeline call will slightly vary.
         
     | 
| 64 | 
         
            +
                    >>> # Refer to the pipeline documentation for more details.
         
     | 
| 65 | 
         
            +
                    >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
         
     | 
| 66 | 
         
            +
                    >>> image.save("flux.png")
         
     | 
| 67 | 
         
            +
                    ```
         
     | 
| 68 | 
         
            +
            """
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            def calculate_shift(
         
     | 
| 72 | 
         
            +
                image_seq_len,
         
     | 
| 73 | 
         
            +
                base_seq_len: int = 256,
         
     | 
| 74 | 
         
            +
                max_seq_len: int = 4096,
         
     | 
| 75 | 
         
            +
                base_shift: float = 0.5,
         
     | 
| 76 | 
         
            +
                max_shift: float = 1.16,
         
     | 
| 77 | 
         
            +
            ):
         
     | 
| 78 | 
         
            +
                m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
         
     | 
| 79 | 
         
            +
                b = base_shift - m * base_seq_len
         
     | 
| 80 | 
         
            +
                mu = image_seq_len * m + b
         
     | 
| 81 | 
         
            +
                return mu
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
         
     | 
| 85 | 
         
            +
            def retrieve_timesteps(
         
     | 
| 86 | 
         
            +
                scheduler,
         
     | 
| 87 | 
         
            +
                num_inference_steps: Optional[int] = None,
         
     | 
| 88 | 
         
            +
                device: Optional[Union[str, torch.device]] = None,
         
     | 
| 89 | 
         
            +
                timesteps: Optional[List[int]] = None,
         
     | 
| 90 | 
         
            +
                sigmas: Optional[List[float]] = None,
         
     | 
| 91 | 
         
            +
                **kwargs,
         
     | 
| 92 | 
         
            +
            ):
         
     | 
| 93 | 
         
            +
                """
         
     | 
| 94 | 
         
            +
                Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
         
     | 
| 95 | 
         
            +
                custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                Args:
         
     | 
| 98 | 
         
            +
                    scheduler (`SchedulerMixin`):
         
     | 
| 99 | 
         
            +
                        The scheduler to get timesteps from.
         
     | 
| 100 | 
         
            +
                    num_inference_steps (`int`):
         
     | 
| 101 | 
         
            +
                        The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
         
     | 
| 102 | 
         
            +
                        must be `None`.
         
     | 
| 103 | 
         
            +
                    device (`str` or `torch.device`, *optional*):
         
     | 
| 104 | 
         
            +
                        The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
         
     | 
| 105 | 
         
            +
                    timesteps (`List[int]`, *optional*):
         
     | 
| 106 | 
         
            +
                        Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
         
     | 
| 107 | 
         
            +
                        `num_inference_steps` and `sigmas` must be `None`.
         
     | 
| 108 | 
         
            +
                    sigmas (`List[float]`, *optional*):
         
     | 
| 109 | 
         
            +
                        Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
         
     | 
| 110 | 
         
            +
                        `num_inference_steps` and `timesteps` must be `None`.
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                Returns:
         
     | 
| 113 | 
         
            +
                    `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
         
     | 
| 114 | 
         
            +
                    second element is the number of inference steps.
         
     | 
| 115 | 
         
            +
                """
         
     | 
| 116 | 
         
            +
                if timesteps is not None and sigmas is not None:
         
     | 
| 117 | 
         
            +
                    raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
         
     | 
| 118 | 
         
            +
                if timesteps is not None:
         
     | 
| 119 | 
         
            +
                    accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
         
     | 
| 120 | 
         
            +
                    if not accepts_timesteps:
         
     | 
| 121 | 
         
            +
                        raise ValueError(
         
     | 
| 122 | 
         
            +
                            f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
         
     | 
| 123 | 
         
            +
                            f" timestep schedules. Please check whether you are using the correct scheduler."
         
     | 
| 124 | 
         
            +
                        )
         
     | 
| 125 | 
         
            +
                    scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
         
     | 
| 126 | 
         
            +
                    timesteps = scheduler.timesteps
         
     | 
| 127 | 
         
            +
                    num_inference_steps = len(timesteps)
         
     | 
| 128 | 
         
            +
                elif sigmas is not None:
         
     | 
| 129 | 
         
            +
                    accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
         
     | 
| 130 | 
         
            +
                    if not accept_sigmas:
         
     | 
| 131 | 
         
            +
                        raise ValueError(
         
     | 
| 132 | 
         
            +
                            f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
         
     | 
| 133 | 
         
            +
                            f" sigmas schedules. Please check whether you are using the correct scheduler."
         
     | 
| 134 | 
         
            +
                        )
         
     | 
| 135 | 
         
            +
                    scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
         
     | 
| 136 | 
         
            +
                    timesteps = scheduler.timesteps
         
     | 
| 137 | 
         
            +
                    num_inference_steps = len(timesteps)
         
     | 
| 138 | 
         
            +
                else:
         
     | 
| 139 | 
         
            +
                    scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
         
     | 
| 140 | 
         
            +
                    timesteps = scheduler.timesteps
         
     | 
| 141 | 
         
            +
                return timesteps, num_inference_steps
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
            class FluxPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
         
     | 
| 145 | 
         
            +
                r"""
         
     | 
| 146 | 
         
            +
                The Flux pipeline for text-to-image generation.
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                Args:
         
     | 
| 151 | 
         
            +
                    transformer ([`FluxTransformer2DModel`]):
         
     | 
| 152 | 
         
            +
                        Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
         
     | 
| 153 | 
         
            +
                    scheduler ([`FlowMatchEulerDiscreteScheduler`]):
         
     | 
| 154 | 
         
            +
                        A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
         
     | 
| 155 | 
         
            +
                    vae ([`AutoencoderKL`]):
         
     | 
| 156 | 
         
            +
                        Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
         
     | 
| 157 | 
         
            +
                    text_encoder ([`CLIPTextModel`]):
         
     | 
| 158 | 
         
            +
                        [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
         
     | 
| 159 | 
         
            +
                        the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
         
     | 
| 160 | 
         
            +
                    text_encoder_2 ([`T5EncoderModel`]):
         
     | 
| 161 | 
         
            +
                        [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
         
     | 
| 162 | 
         
            +
                        the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
         
     | 
| 163 | 
         
            +
                    tokenizer (`CLIPTokenizer`):
         
     | 
| 164 | 
         
            +
                        Tokenizer of class
         
     | 
| 165 | 
         
            +
                        [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
         
     | 
| 166 | 
         
            +
                    tokenizer_2 (`T5TokenizerFast`):
         
     | 
| 167 | 
         
            +
                        Second Tokenizer of class
         
     | 
| 168 | 
         
            +
                        [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
         
     | 
| 169 | 
         
            +
                """
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
                model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
         
     | 
| 172 | 
         
            +
                _optional_components = []
         
     | 
| 173 | 
         
            +
                _callback_tensor_inputs = ["latents", "prompt_embeds"]
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                def __init__(
         
     | 
| 176 | 
         
            +
                    self,
         
     | 
| 177 | 
         
            +
                    scheduler: FlowMatchEulerDiscreteScheduler,
         
     | 
| 178 | 
         
            +
                    vae: AutoencoderKL,
         
     | 
| 179 | 
         
            +
                    text_encoder: CLIPTextModel,
         
     | 
| 180 | 
         
            +
                    tokenizer: CLIPTokenizer,
         
     | 
| 181 | 
         
            +
                    text_encoder_2: T5EncoderModel,
         
     | 
| 182 | 
         
            +
                    tokenizer_2: T5TokenizerFast,
         
     | 
| 183 | 
         
            +
                    transformer: FluxTransformer2DModel,
         
     | 
| 184 | 
         
            +
                ):
         
     | 
| 185 | 
         
            +
                    super().__init__()
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
                    self.register_modules(
         
     | 
| 188 | 
         
            +
                        vae=vae,
         
     | 
| 189 | 
         
            +
                        text_encoder=text_encoder,
         
     | 
| 190 | 
         
            +
                        text_encoder_2=text_encoder_2,
         
     | 
| 191 | 
         
            +
                        tokenizer=tokenizer,
         
     | 
| 192 | 
         
            +
                        tokenizer_2=tokenizer_2,
         
     | 
| 193 | 
         
            +
                        transformer=transformer,
         
     | 
| 194 | 
         
            +
                        scheduler=scheduler,
         
     | 
| 195 | 
         
            +
                    )
         
     | 
| 196 | 
         
            +
                    self.vae_scale_factor = (
         
     | 
| 197 | 
         
            +
                        2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
         
     | 
| 198 | 
         
            +
                    )
         
     | 
| 199 | 
         
            +
                    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
         
     | 
| 200 | 
         
            +
                    self.tokenizer_max_length = (
         
     | 
| 201 | 
         
            +
                        self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
         
     | 
| 202 | 
         
            +
                    )
         
     | 
| 203 | 
         
            +
                    self.default_sample_size = 64
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
                def _get_t5_prompt_embeds(
         
     | 
| 206 | 
         
            +
                    self,
         
     | 
| 207 | 
         
            +
                    prompt: Union[str, List[str]] = None,
         
     | 
| 208 | 
         
            +
                    num_images_per_prompt: int = 1,
         
     | 
| 209 | 
         
            +
                    max_sequence_length: int = 512,
         
     | 
| 210 | 
         
            +
                    device: Optional[torch.device] = None,
         
     | 
| 211 | 
         
            +
                    dtype: Optional[torch.dtype] = None,
         
     | 
| 212 | 
         
            +
                ):
         
     | 
| 213 | 
         
            +
                    device = device or self._execution_device
         
     | 
| 214 | 
         
            +
                    dtype = dtype or self.text_encoder.dtype
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         
     | 
| 217 | 
         
            +
                    batch_size = len(prompt)
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
                    text_inputs = self.tokenizer_2(
         
     | 
| 220 | 
         
            +
                        prompt,
         
     | 
| 221 | 
         
            +
                        padding="max_length",
         
     | 
| 222 | 
         
            +
                        max_length=max_sequence_length,
         
     | 
| 223 | 
         
            +
                        truncation=True,
         
     | 
| 224 | 
         
            +
                        return_length=False,
         
     | 
| 225 | 
         
            +
                        return_overflowing_tokens=False,
         
     | 
| 226 | 
         
            +
                        return_tensors="pt",
         
     | 
| 227 | 
         
            +
                    )
         
     | 
| 228 | 
         
            +
                    text_input_ids = text_inputs.input_ids
         
     | 
| 229 | 
         
            +
                    untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
         
     | 
| 230 | 
         
            +
             
     | 
| 231 | 
         
            +
                    if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
         
     | 
| 232 | 
         
            +
                        removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
         
     | 
| 233 | 
         
            +
                        logger.warning(
         
     | 
| 234 | 
         
            +
                            "The following part of your input was truncated because `max_sequence_length` is set to "
         
     | 
| 235 | 
         
            +
                            f" {max_sequence_length} tokens: {removed_text}"
         
     | 
| 236 | 
         
            +
                        )
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
                    prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
         
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
                    dtype = self.text_encoder_2.dtype
         
     | 
| 241 | 
         
            +
                    prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
                    _, seq_len, _ = prompt_embeds.shape
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                    # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
         
     | 
| 246 | 
         
            +
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         
     | 
| 247 | 
         
            +
                    prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                    return prompt_embeds
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                def _get_clip_prompt_embeds(
         
     | 
| 252 | 
         
            +
                    self,
         
     | 
| 253 | 
         
            +
                    prompt: Union[str, List[str]],
         
     | 
| 254 | 
         
            +
                    num_images_per_prompt: int = 1,
         
     | 
| 255 | 
         
            +
                    device: Optional[torch.device] = None,
         
     | 
| 256 | 
         
            +
                ):
         
     | 
| 257 | 
         
            +
                    device = device or self._execution_device
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         
     | 
| 260 | 
         
            +
                    batch_size = len(prompt)
         
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
                    text_inputs = self.tokenizer(
         
     | 
| 263 | 
         
            +
                        prompt,
         
     | 
| 264 | 
         
            +
                        padding="max_length",
         
     | 
| 265 | 
         
            +
                        max_length=self.tokenizer_max_length,
         
     | 
| 266 | 
         
            +
                        truncation=True,
         
     | 
| 267 | 
         
            +
                        return_overflowing_tokens=False,
         
     | 
| 268 | 
         
            +
                        return_length=False,
         
     | 
| 269 | 
         
            +
                        return_tensors="pt",
         
     | 
| 270 | 
         
            +
                    )
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
                    text_input_ids = text_inputs.input_ids
         
     | 
| 273 | 
         
            +
                    untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
         
     | 
| 274 | 
         
            +
                    if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
         
     | 
| 275 | 
         
            +
                        removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
         
     | 
| 276 | 
         
            +
                        logger.warning(
         
     | 
| 277 | 
         
            +
                            "The following part of your input was truncated because CLIP can only handle sequences up to"
         
     | 
| 278 | 
         
            +
                            f" {self.tokenizer_max_length} tokens: {removed_text}"
         
     | 
| 279 | 
         
            +
                        )
         
     | 
| 280 | 
         
            +
                    prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                    # Use pooled output of CLIPTextModel
         
     | 
| 283 | 
         
            +
                    prompt_embeds = prompt_embeds.pooler_output
         
     | 
| 284 | 
         
            +
                    prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
                    # duplicate text embeddings for each generation per prompt, using mps friendly method
         
     | 
| 287 | 
         
            +
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
         
     | 
| 288 | 
         
            +
                    prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
                    return prompt_embeds
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
                def encode_prompt(
         
     | 
| 293 | 
         
            +
                    self,
         
     | 
| 294 | 
         
            +
                    prompt: Union[str, List[str]],
         
     | 
| 295 | 
         
            +
                    prompt_2: Union[str, List[str]],
         
     | 
| 296 | 
         
            +
                    device: Optional[torch.device] = None,
         
     | 
| 297 | 
         
            +
                    num_images_per_prompt: int = 1,
         
     | 
| 298 | 
         
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 299 | 
         
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 300 | 
         
            +
                    max_sequence_length: int = 512,
         
     | 
| 301 | 
         
            +
                    lora_scale: Optional[float] = None,
         
     | 
| 302 | 
         
            +
                ):
         
     | 
| 303 | 
         
            +
                    r"""
         
     | 
| 304 | 
         
            +
             
     | 
| 305 | 
         
            +
                    Args:
         
     | 
| 306 | 
         
            +
                        prompt (`str` or `List[str]`, *optional*):
         
     | 
| 307 | 
         
            +
                            prompt to be encoded
         
     | 
| 308 | 
         
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         
     | 
| 309 | 
         
            +
                            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         
     | 
| 310 | 
         
            +
                            used in all text-encoders
         
     | 
| 311 | 
         
            +
                        device: (`torch.device`):
         
     | 
| 312 | 
         
            +
                            torch device
         
     | 
| 313 | 
         
            +
                        num_images_per_prompt (`int`):
         
     | 
| 314 | 
         
            +
                            number of images that should be generated per prompt
         
     | 
| 315 | 
         
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 316 | 
         
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         
     | 
| 317 | 
         
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         
     | 
| 318 | 
         
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 319 | 
         
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         
     | 
| 320 | 
         
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         
     | 
| 321 | 
         
            +
                        lora_scale (`float`, *optional*):
         
     | 
| 322 | 
         
            +
                            A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
         
     | 
| 323 | 
         
            +
                    """
         
     | 
| 324 | 
         
            +
                    device = device or self._execution_device
         
     | 
| 325 | 
         
            +
             
     | 
| 326 | 
         
            +
                    # set lora scale so that monkey patched LoRA
         
     | 
| 327 | 
         
            +
                    # function of text encoder can correctly access it
         
     | 
| 328 | 
         
            +
                    if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
         
     | 
| 329 | 
         
            +
                        self._lora_scale = lora_scale
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                        # dynamically adjust the LoRA scale
         
     | 
| 332 | 
         
            +
                        if self.text_encoder is not None and USE_PEFT_BACKEND:
         
     | 
| 333 | 
         
            +
                            scale_lora_layers(self.text_encoder, lora_scale)
         
     | 
| 334 | 
         
            +
                        if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
         
     | 
| 335 | 
         
            +
                            scale_lora_layers(self.text_encoder_2, lora_scale)
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         
     | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
            +
                    if prompt_embeds is None:
         
     | 
| 340 | 
         
            +
                        prompt_2 = prompt_2 or prompt
         
     | 
| 341 | 
         
            +
                        prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
                        # We only use the pooled prompt output from the CLIPTextModel
         
     | 
| 344 | 
         
            +
                        pooled_prompt_embeds = self._get_clip_prompt_embeds(
         
     | 
| 345 | 
         
            +
                            prompt=prompt,
         
     | 
| 346 | 
         
            +
                            device=device,
         
     | 
| 347 | 
         
            +
                            num_images_per_prompt=num_images_per_prompt,
         
     | 
| 348 | 
         
            +
                        )
         
     | 
| 349 | 
         
            +
                        prompt_embeds = self._get_t5_prompt_embeds(
         
     | 
| 350 | 
         
            +
                            prompt=prompt_2,
         
     | 
| 351 | 
         
            +
                            num_images_per_prompt=num_images_per_prompt,
         
     | 
| 352 | 
         
            +
                            max_sequence_length=max_sequence_length,
         
     | 
| 353 | 
         
            +
                            device=device,
         
     | 
| 354 | 
         
            +
                        )
         
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
                    if self.text_encoder is not None:
         
     | 
| 357 | 
         
            +
                        if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
         
     | 
| 358 | 
         
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         
     | 
| 359 | 
         
            +
                            unscale_lora_layers(self.text_encoder, lora_scale)
         
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
                    if self.text_encoder_2 is not None:
         
     | 
| 362 | 
         
            +
                        if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
         
     | 
| 363 | 
         
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         
     | 
| 364 | 
         
            +
                            unscale_lora_layers(self.text_encoder_2, lora_scale)
         
     | 
| 365 | 
         
            +
             
     | 
| 366 | 
         
            +
                    dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
         
     | 
| 367 | 
         
            +
                    text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
         
     | 
| 368 | 
         
            +
             
     | 
| 369 | 
         
            +
                    return prompt_embeds, pooled_prompt_embeds, text_ids
         
     | 
| 370 | 
         
            +
                
         
     | 
| 371 | 
         
            +
                def encode_regional_prompt(
         
     | 
| 372 | 
         
            +
                    self,
         
     | 
| 373 | 
         
            +
                    prompt: Union[str, List[str]],
         
     | 
| 374 | 
         
            +
                    prompt_2: Union[str, List[str]],
         
     | 
| 375 | 
         
            +
                    device: Optional[torch.device] = None,
         
     | 
| 376 | 
         
            +
                    num_images_per_prompt: int = 1,
         
     | 
| 377 | 
         
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 378 | 
         
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 379 | 
         
            +
                    max_sequence_length: int = 512,
         
     | 
| 380 | 
         
            +
                    lora_scale: Optional[float] = None,
         
     | 
| 381 | 
         
            +
                ):
         
     | 
| 382 | 
         
            +
                    r"""
         
     | 
| 383 | 
         
            +
             
     | 
| 384 | 
         
            +
                    Args:
         
     | 
| 385 | 
         
            +
                        prompt (`str` or `List[str]`, *optional*):
         
     | 
| 386 | 
         
            +
                            prompt to be encoded
         
     | 
| 387 | 
         
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         
     | 
| 388 | 
         
            +
                            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         
     | 
| 389 | 
         
            +
                            used in all text-encoders
         
     | 
| 390 | 
         
            +
                        device: (`torch.device`):
         
     | 
| 391 | 
         
            +
                            torch device
         
     | 
| 392 | 
         
            +
                        num_images_per_prompt (`int`):
         
     | 
| 393 | 
         
            +
                            number of images that should be generated per prompt
         
     | 
| 394 | 
         
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 395 | 
         
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         
     | 
| 396 | 
         
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         
     | 
| 397 | 
         
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 398 | 
         
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         
     | 
| 399 | 
         
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         
     | 
| 400 | 
         
            +
                        lora_scale (`float`, *optional*):
         
     | 
| 401 | 
         
            +
                            A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
         
     | 
| 402 | 
         
            +
                    """
         
     | 
| 403 | 
         
            +
                    device = device or self._execution_device
         
     | 
| 404 | 
         
            +
             
     | 
| 405 | 
         
            +
                    # set lora scale so that monkey patched LoRA
         
     | 
| 406 | 
         
            +
                    # function of text encoder can correctly access it
         
     | 
| 407 | 
         
            +
                    if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
         
     | 
| 408 | 
         
            +
                        self._lora_scale = lora_scale
         
     | 
| 409 | 
         
            +
             
     | 
| 410 | 
         
            +
                        # dynamically adjust the LoRA scale
         
     | 
| 411 | 
         
            +
                        if self.text_encoder is not None and USE_PEFT_BACKEND:
         
     | 
| 412 | 
         
            +
                            scale_lora_layers(self.text_encoder, lora_scale)
         
     | 
| 413 | 
         
            +
                        if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
         
     | 
| 414 | 
         
            +
                            scale_lora_layers(self.text_encoder_2, lora_scale)
         
     | 
| 415 | 
         
            +
             
     | 
| 416 | 
         
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         
     | 
| 417 | 
         
            +
                            
         
     | 
| 418 | 
         
            +
                    if prompt_embeds is None:
         
     | 
| 419 | 
         
            +
                        prompt_2 = prompt_2 or prompt
         
     | 
| 420 | 
         
            +
                        prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
                        # We only use the pooled prompt output from the CLIPTextModel
         
     | 
| 423 | 
         
            +
                        pooled_prompt_embeds = self._get_clip_prompt_embeds(
         
     | 
| 424 | 
         
            +
                            prompt=prompt,
         
     | 
| 425 | 
         
            +
                            device=device,
         
     | 
| 426 | 
         
            +
                            num_images_per_prompt=num_images_per_prompt,
         
     | 
| 427 | 
         
            +
                        )
         
     | 
| 428 | 
         
            +
                        prompt_embeds = self._get_t5_prompt_embeds(
         
     | 
| 429 | 
         
            +
                            prompt=prompt_2,
         
     | 
| 430 | 
         
            +
                            num_images_per_prompt=num_images_per_prompt,
         
     | 
| 431 | 
         
            +
                            max_sequence_length=max_sequence_length,
         
     | 
| 432 | 
         
            +
                            device=device,
         
     | 
| 433 | 
         
            +
                        )
         
     | 
| 434 | 
         
            +
                    
         
     | 
| 435 | 
         
            +
                    if self.text_encoder is not None:
         
     | 
| 436 | 
         
            +
                        if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
         
     | 
| 437 | 
         
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         
     | 
| 438 | 
         
            +
                            unscale_lora_layers(self.text_encoder, lora_scale)
         
     | 
| 439 | 
         
            +
             
     | 
| 440 | 
         
            +
                    if self.text_encoder_2 is not None:
         
     | 
| 441 | 
         
            +
                        if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
         
     | 
| 442 | 
         
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         
     | 
| 443 | 
         
            +
                            unscale_lora_layers(self.text_encoder_2, lora_scale)
         
     | 
| 444 | 
         
            +
             
     | 
| 445 | 
         
            +
                    dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
         
     | 
| 446 | 
         
            +
                    text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
         
     | 
| 447 | 
         
            +
                    
         
     | 
| 448 | 
         
            +
                    # hard code here!
         
     | 
| 449 | 
         
            +
                    regional_prompts = prompt[0].split(";")
         
     | 
| 450 | 
         
            +
                    prompt_embeds_list = []
         
     | 
| 451 | 
         
            +
                    for regional_prompt in regional_prompts:
         
     | 
| 452 | 
         
            +
                        prompt_embeds = self._get_t5_prompt_embeds(
         
     | 
| 453 | 
         
            +
                            prompt=regional_prompt,
         
     | 
| 454 | 
         
            +
                            num_images_per_prompt=num_images_per_prompt,
         
     | 
| 455 | 
         
            +
                            max_sequence_length=max_sequence_length,
         
     | 
| 456 | 
         
            +
                            device=device,
         
     | 
| 457 | 
         
            +
                        )
         
     | 
| 458 | 
         
            +
                        prompt_embeds_list.append(prompt_embeds)
         
     | 
| 459 | 
         
            +
                    prompt_embeds = torch.concat(prompt_embeds_list, dim=1)
         
     | 
| 460 | 
         
            +
                        
         
     | 
| 461 | 
         
            +
                    #print(prompt_embeds.shape, pooled_prompt_embeds.shape, text_ids.shape)
         
     | 
| 462 | 
         
            +
                    # torch.Size([1, 512*num_prompt, 4096]) torch.Size([1, 768]) torch.Size([512, 3])
         
     | 
| 463 | 
         
            +
                            
         
     | 
| 464 | 
         
            +
                    return prompt_embeds, pooled_prompt_embeds, text_ids
         
     | 
| 465 | 
         
            +
                
         
     | 
| 466 | 
         
            +
                def check_inputs(
         
     | 
| 467 | 
         
            +
                    self,
         
     | 
| 468 | 
         
            +
                    prompt,
         
     | 
| 469 | 
         
            +
                    prompt_2,
         
     | 
| 470 | 
         
            +
                    height,
         
     | 
| 471 | 
         
            +
                    width,
         
     | 
| 472 | 
         
            +
                    prompt_embeds=None,
         
     | 
| 473 | 
         
            +
                    pooled_prompt_embeds=None,
         
     | 
| 474 | 
         
            +
                    callback_on_step_end_tensor_inputs=None,
         
     | 
| 475 | 
         
            +
                    max_sequence_length=None,
         
     | 
| 476 | 
         
            +
                ):
         
     | 
| 477 | 
         
            +
                    if height % 8 != 0 or width % 8 != 0:
         
     | 
| 478 | 
         
            +
                        raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
         
     | 
| 479 | 
         
            +
             
     | 
| 480 | 
         
            +
                    if callback_on_step_end_tensor_inputs is not None and not all(
         
     | 
| 481 | 
         
            +
                        k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
         
     | 
| 482 | 
         
            +
                    ):
         
     | 
| 483 | 
         
            +
                        raise ValueError(
         
     | 
| 484 | 
         
            +
                            f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
         
     | 
| 485 | 
         
            +
                        )
         
     | 
| 486 | 
         
            +
             
     | 
| 487 | 
         
            +
                    if prompt is not None and prompt_embeds is not None:
         
     | 
| 488 | 
         
            +
                        raise ValueError(
         
     | 
| 489 | 
         
            +
                            f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         
     | 
| 490 | 
         
            +
                            " only forward one of the two."
         
     | 
| 491 | 
         
            +
                        )
         
     | 
| 492 | 
         
            +
                    elif prompt_2 is not None and prompt_embeds is not None:
         
     | 
| 493 | 
         
            +
                        raise ValueError(
         
     | 
| 494 | 
         
            +
                            f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         
     | 
| 495 | 
         
            +
                            " only forward one of the two."
         
     | 
| 496 | 
         
            +
                        )
         
     | 
| 497 | 
         
            +
                    elif prompt is None and prompt_embeds is None:
         
     | 
| 498 | 
         
            +
                        raise ValueError(
         
     | 
| 499 | 
         
            +
                            "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
         
     | 
| 500 | 
         
            +
                        )
         
     | 
| 501 | 
         
            +
                    elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
         
     | 
| 502 | 
         
            +
                        raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
         
     | 
| 503 | 
         
            +
                    elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
         
     | 
| 504 | 
         
            +
                        raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
         
     | 
| 505 | 
         
            +
             
     | 
| 506 | 
         
            +
                    if prompt_embeds is not None and pooled_prompt_embeds is None:
         
     | 
| 507 | 
         
            +
                        raise ValueError(
         
     | 
| 508 | 
         
            +
                            "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
         
     | 
| 509 | 
         
            +
                        )
         
     | 
| 510 | 
         
            +
             
     | 
| 511 | 
         
            +
                    if max_sequence_length is not None and max_sequence_length > 512:
         
     | 
| 512 | 
         
            +
                        raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
         
     | 
| 513 | 
         
            +
             
     | 
| 514 | 
         
            +
                @staticmethod
         
     | 
| 515 | 
         
            +
                def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
         
     | 
| 516 | 
         
            +
                    # print(batch_size, height, width)
         
     | 
| 517 | 
         
            +
                    # 1 96 160
         
     | 
| 518 | 
         
            +
                    latent_image_ids = torch.zeros(height // 2, width // 2, 3)
         
     | 
| 519 | 
         
            +
                    latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
         
     | 
| 520 | 
         
            +
                    latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
         
     | 
| 521 | 
         
            +
             
     | 
| 522 | 
         
            +
                    latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
         
     | 
| 523 | 
         
            +
             
     | 
| 524 | 
         
            +
                    latent_image_ids = latent_image_ids.reshape(
         
     | 
| 525 | 
         
            +
                        latent_image_id_height * latent_image_id_width, latent_image_id_channels
         
     | 
| 526 | 
         
            +
                    )
         
     | 
| 527 | 
         
            +
             
     | 
| 528 | 
         
            +
                    return latent_image_ids.to(device=device, dtype=dtype)
         
     | 
| 529 | 
         
            +
             
     | 
| 530 | 
         
            +
                @staticmethod
         
     | 
| 531 | 
         
            +
                def _pack_latents(latents, batch_size, num_channels_latents, height, width):
         
     | 
| 532 | 
         
            +
                    latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
         
     | 
| 533 | 
         
            +
                    latents = latents.permute(0, 2, 4, 1, 3, 5)
         
     | 
| 534 | 
         
            +
                    latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
         
     | 
| 535 | 
         
            +
             
     | 
| 536 | 
         
            +
                    return latents
         
     | 
| 537 | 
         
            +
             
     | 
| 538 | 
         
            +
                @staticmethod
         
     | 
| 539 | 
         
            +
                def _unpack_latents(latents, height, width, vae_scale_factor):
         
     | 
| 540 | 
         
            +
                    batch_size, num_patches, channels = latents.shape
         
     | 
| 541 | 
         
            +
             
     | 
| 542 | 
         
            +
                    height = height // vae_scale_factor
         
     | 
| 543 | 
         
            +
                    width = width // vae_scale_factor
         
     | 
| 544 | 
         
            +
             
     | 
| 545 | 
         
            +
                    latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
         
     | 
| 546 | 
         
            +
                    latents = latents.permute(0, 3, 1, 4, 2, 5)
         
     | 
| 547 | 
         
            +
             
     | 
| 548 | 
         
            +
                    latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
         
     | 
| 549 | 
         
            +
             
     | 
| 550 | 
         
            +
                    return latents
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
                def enable_vae_slicing(self):
         
     | 
| 553 | 
         
            +
                    r"""
         
     | 
| 554 | 
         
            +
                    Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
         
     | 
| 555 | 
         
            +
                    compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
         
     | 
| 556 | 
         
            +
                    """
         
     | 
| 557 | 
         
            +
                    self.vae.enable_slicing()
         
     | 
| 558 | 
         
            +
             
     | 
| 559 | 
         
            +
                def disable_vae_slicing(self):
         
     | 
| 560 | 
         
            +
                    r"""
         
     | 
| 561 | 
         
            +
                    Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
         
     | 
| 562 | 
         
            +
                    computing decoding in one step.
         
     | 
| 563 | 
         
            +
                    """
         
     | 
| 564 | 
         
            +
                    self.vae.disable_slicing()
         
     | 
| 565 | 
         
            +
             
     | 
| 566 | 
         
            +
                def enable_vae_tiling(self):
         
     | 
| 567 | 
         
            +
                    r"""
         
     | 
| 568 | 
         
            +
                    Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
         
     | 
| 569 | 
         
            +
                    compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
         
     | 
| 570 | 
         
            +
                    processing larger images.
         
     | 
| 571 | 
         
            +
                    """
         
     | 
| 572 | 
         
            +
                    self.vae.enable_tiling()
         
     | 
| 573 | 
         
            +
             
     | 
| 574 | 
         
            +
                def disable_vae_tiling(self):
         
     | 
| 575 | 
         
            +
                    r"""
         
     | 
| 576 | 
         
            +
                    Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
         
     | 
| 577 | 
         
            +
                    computing decoding in one step.
         
     | 
| 578 | 
         
            +
                    """
         
     | 
| 579 | 
         
            +
                    self.vae.disable_tiling()
         
     | 
| 580 | 
         
            +
             
     | 
| 581 | 
         
            +
                def prepare_latents(
         
     | 
| 582 | 
         
            +
                    self,
         
     | 
| 583 | 
         
            +
                    batch_size,
         
     | 
| 584 | 
         
            +
                    num_channels_latents,
         
     | 
| 585 | 
         
            +
                    height,
         
     | 
| 586 | 
         
            +
                    width,
         
     | 
| 587 | 
         
            +
                    dtype,
         
     | 
| 588 | 
         
            +
                    device,
         
     | 
| 589 | 
         
            +
                    generator,
         
     | 
| 590 | 
         
            +
                    latents=None,
         
     | 
| 591 | 
         
            +
                ):
         
     | 
| 592 | 
         
            +
                    height = 2 * (int(height) // self.vae_scale_factor)
         
     | 
| 593 | 
         
            +
                    width = 2 * (int(width) // self.vae_scale_factor)
         
     | 
| 594 | 
         
            +
             
     | 
| 595 | 
         
            +
                    shape = (batch_size, num_channels_latents, height, width)
         
     | 
| 596 | 
         
            +
             
     | 
| 597 | 
         
            +
                    if latents is not None:
         
     | 
| 598 | 
         
            +
                        latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
         
     | 
| 599 | 
         
            +
                        return latents.to(device=device, dtype=dtype), latent_image_ids
         
     | 
| 600 | 
         
            +
             
     | 
| 601 | 
         
            +
                    if isinstance(generator, list) and len(generator) != batch_size:
         
     | 
| 602 | 
         
            +
                        raise ValueError(
         
     | 
| 603 | 
         
            +
                            f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         
     | 
| 604 | 
         
            +
                            f" size of {batch_size}. Make sure the batch size matches the length of the generators."
         
     | 
| 605 | 
         
            +
                        )
         
     | 
| 606 | 
         
            +
             
     | 
| 607 | 
         
            +
                    latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # torch.Size([1, 16, 96, 160])
         
     | 
| 608 | 
         
            +
                    latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) # torch.Size([1, 3840, 64])
         
     | 
| 609 | 
         
            +
                    
         
     | 
| 610 | 
         
            +
                    latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) # torch.Size([3840, 3])
         
     | 
| 611 | 
         
            +
             
     | 
| 612 | 
         
            +
                    return latents, latent_image_ids
         
     | 
| 613 | 
         
            +
             
     | 
| 614 | 
         
            +
                @property
         
     | 
| 615 | 
         
            +
                def guidance_scale(self):
         
     | 
| 616 | 
         
            +
                    return self._guidance_scale
         
     | 
| 617 | 
         
            +
             
     | 
| 618 | 
         
            +
                @property
         
     | 
| 619 | 
         
            +
                def joint_attention_kwargs(self):
         
     | 
| 620 | 
         
            +
                    return self._joint_attention_kwargs
         
     | 
| 621 | 
         
            +
             
     | 
| 622 | 
         
            +
                @property
         
     | 
| 623 | 
         
            +
                def num_timesteps(self):
         
     | 
| 624 | 
         
            +
                    return self._num_timesteps
         
     | 
| 625 | 
         
            +
             
     | 
| 626 | 
         
            +
                @property
         
     | 
| 627 | 
         
            +
                def interrupt(self):
         
     | 
| 628 | 
         
            +
                    return self._interrupt
         
     | 
| 629 | 
         
            +
             
     | 
| 630 | 
         
            +
                @torch.no_grad()
         
     | 
| 631 | 
         
            +
                @replace_example_docstring(EXAMPLE_DOC_STRING)
         
     | 
| 632 | 
         
            +
                def __call__(
         
     | 
| 633 | 
         
            +
                    self,
         
     | 
| 634 | 
         
            +
                    prompt: Union[str, List[str]] = None,
         
     | 
| 635 | 
         
            +
                    prompt_2: Optional[Union[str, List[str]]] = None,
         
     | 
| 636 | 
         
            +
                    height: Optional[int] = None,
         
     | 
| 637 | 
         
            +
                    width: Optional[int] = None,
         
     | 
| 638 | 
         
            +
                    num_inference_steps: int = 28,
         
     | 
| 639 | 
         
            +
                    timesteps: List[int] = None,
         
     | 
| 640 | 
         
            +
                    guidance_scale: float = 3.5,
         
     | 
| 641 | 
         
            +
                    num_images_per_prompt: Optional[int] = 1,
         
     | 
| 642 | 
         
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         
     | 
| 643 | 
         
            +
                    latents: Optional[torch.FloatTensor] = None,
         
     | 
| 644 | 
         
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 645 | 
         
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 646 | 
         
            +
                    image_emb: Optional[torch.FloatTensor] = None,
         
     | 
| 647 | 
         
            +
                    output_type: Optional[str] = "pil",
         
     | 
| 648 | 
         
            +
                    return_dict: bool = True,
         
     | 
| 649 | 
         
            +
                    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 650 | 
         
            +
                    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
         
     | 
| 651 | 
         
            +
                    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
         
     | 
| 652 | 
         
            +
                    max_sequence_length: int = 512,
         
     | 
| 653 | 
         
            +
                ):
         
     | 
| 654 | 
         
            +
                    r"""
         
     | 
| 655 | 
         
            +
                    Function invoked when calling the pipeline for generation.
         
     | 
| 656 | 
         
            +
             
     | 
| 657 | 
         
            +
                    Args:
         
     | 
| 658 | 
         
            +
                        prompt (`str` or `List[str]`, *optional*):
         
     | 
| 659 | 
         
            +
                            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
         
     | 
| 660 | 
         
            +
                            instead.
         
     | 
| 661 | 
         
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         
     | 
| 662 | 
         
            +
                            The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         
     | 
| 663 | 
         
            +
                            will be used instead
         
     | 
| 664 | 
         
            +
                        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         
     | 
| 665 | 
         
            +
                            The height in pixels of the generated image. This is set to 1024 by default for the best results.
         
     | 
| 666 | 
         
            +
                        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         
     | 
| 667 | 
         
            +
                            The width in pixels of the generated image. This is set to 1024 by default for the best results.
         
     | 
| 668 | 
         
            +
                        num_inference_steps (`int`, *optional*, defaults to 50):
         
     | 
| 669 | 
         
            +
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         
     | 
| 670 | 
         
            +
                            expense of slower inference.
         
     | 
| 671 | 
         
            +
                        timesteps (`List[int]`, *optional*):
         
     | 
| 672 | 
         
            +
                            Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
         
     | 
| 673 | 
         
            +
                            in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
         
     | 
| 674 | 
         
            +
                            passed will be used. Must be in descending order.
         
     | 
| 675 | 
         
            +
                        guidance_scale (`float`, *optional*, defaults to 7.0):
         
     | 
| 676 | 
         
            +
                            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
         
     | 
| 677 | 
         
            +
                            `guidance_scale` is defined as `w` of equation 2. of [Imagen
         
     | 
| 678 | 
         
            +
                            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
         
     | 
| 679 | 
         
            +
                            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
         
     | 
| 680 | 
         
            +
                            usually at the expense of lower image quality.
         
     | 
| 681 | 
         
            +
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         
     | 
| 682 | 
         
            +
                            The number of images to generate per prompt.
         
     | 
| 683 | 
         
            +
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         
     | 
| 684 | 
         
            +
                            One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
         
     | 
| 685 | 
         
            +
                            to make generation deterministic.
         
     | 
| 686 | 
         
            +
                        latents (`torch.FloatTensor`, *optional*):
         
     | 
| 687 | 
         
            +
                            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
         
     | 
| 688 | 
         
            +
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         
     | 
| 689 | 
         
            +
                            tensor will ge generated by sampling using the supplied random `generator`.
         
     | 
| 690 | 
         
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 691 | 
         
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         
     | 
| 692 | 
         
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         
     | 
| 693 | 
         
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 694 | 
         
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         
     | 
| 695 | 
         
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         
     | 
| 696 | 
         
            +
                        output_type (`str`, *optional*, defaults to `"pil"`):
         
     | 
| 697 | 
         
            +
                            The output format of the generate image. Choose between
         
     | 
| 698 | 
         
            +
                            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
         
     | 
| 699 | 
         
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         
     | 
| 700 | 
         
            +
                            Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
         
     | 
| 701 | 
         
            +
                        joint_attention_kwargs (`dict`, *optional*):
         
     | 
| 702 | 
         
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         
     | 
| 703 | 
         
            +
                            `self.processor` in
         
     | 
| 704 | 
         
            +
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         
     | 
| 705 | 
         
            +
                        callback_on_step_end (`Callable`, *optional*):
         
     | 
| 706 | 
         
            +
                            A function that calls at the end of each denoising steps during the inference. The function is called
         
     | 
| 707 | 
         
            +
                            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
         
     | 
| 708 | 
         
            +
                            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
         
     | 
| 709 | 
         
            +
                            `callback_on_step_end_tensor_inputs`.
         
     | 
| 710 | 
         
            +
                        callback_on_step_end_tensor_inputs (`List`, *optional*):
         
     | 
| 711 | 
         
            +
                            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
         
     | 
| 712 | 
         
            +
                            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
         
     | 
| 713 | 
         
            +
                            `._callback_tensor_inputs` attribute of your pipeline class.
         
     | 
| 714 | 
         
            +
                        max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
         
     | 
| 715 | 
         
            +
             
     | 
| 716 | 
         
            +
                    Examples:
         
     | 
| 717 | 
         
            +
             
     | 
| 718 | 
         
            +
                    Returns:
         
     | 
| 719 | 
         
            +
                        [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
         
     | 
| 720 | 
         
            +
                        is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
         
     | 
| 721 | 
         
            +
                        images.
         
     | 
| 722 | 
         
            +
                    """
         
     | 
| 723 | 
         
            +
             
     | 
| 724 | 
         
            +
                    height = height or self.default_sample_size * self.vae_scale_factor
         
     | 
| 725 | 
         
            +
                    width = width or self.default_sample_size * self.vae_scale_factor
         
     | 
| 726 | 
         
            +
             
     | 
| 727 | 
         
            +
                    # 1. Check inputs. Raise error if not correct
         
     | 
| 728 | 
         
            +
                    self.check_inputs(
         
     | 
| 729 | 
         
            +
                        prompt,
         
     | 
| 730 | 
         
            +
                        prompt_2,
         
     | 
| 731 | 
         
            +
                        height,
         
     | 
| 732 | 
         
            +
                        width,
         
     | 
| 733 | 
         
            +
                        prompt_embeds=prompt_embeds,
         
     | 
| 734 | 
         
            +
                        pooled_prompt_embeds=pooled_prompt_embeds,
         
     | 
| 735 | 
         
            +
                        callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
         
     | 
| 736 | 
         
            +
                        max_sequence_length=max_sequence_length,
         
     | 
| 737 | 
         
            +
                    )
         
     | 
| 738 | 
         
            +
             
     | 
| 739 | 
         
            +
                    self._guidance_scale = guidance_scale
         
     | 
| 740 | 
         
            +
                    self._joint_attention_kwargs = joint_attention_kwargs
         
     | 
| 741 | 
         
            +
                    self._interrupt = False
         
     | 
| 742 | 
         
            +
             
     | 
| 743 | 
         
            +
                    # 2. Define call parameters
         
     | 
| 744 | 
         
            +
                    if prompt is not None and isinstance(prompt, str):
         
     | 
| 745 | 
         
            +
                        batch_size = 1
         
     | 
| 746 | 
         
            +
                    elif prompt is not None and isinstance(prompt, list):
         
     | 
| 747 | 
         
            +
                        batch_size = len(prompt)
         
     | 
| 748 | 
         
            +
                    else:
         
     | 
| 749 | 
         
            +
                        batch_size = prompt_embeds.shape[0]
         
     | 
| 750 | 
         
            +
             
     | 
| 751 | 
         
            +
                    device = self._execution_device
         
     | 
| 752 | 
         
            +
             
     | 
| 753 | 
         
            +
                    lora_scale = (
         
     | 
| 754 | 
         
            +
                        self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
         
     | 
| 755 | 
         
            +
                    )
         
     | 
| 756 | 
         
            +
                    (
         
     | 
| 757 | 
         
            +
                        prompt_embeds,
         
     | 
| 758 | 
         
            +
                        pooled_prompt_embeds,
         
     | 
| 759 | 
         
            +
                        text_ids,
         
     | 
| 760 | 
         
            +
                    ) = self.encode_prompt(
         
     | 
| 761 | 
         
            +
                        prompt=prompt,
         
     | 
| 762 | 
         
            +
                        prompt_2=prompt_2,
         
     | 
| 763 | 
         
            +
                        prompt_embeds=prompt_embeds,
         
     | 
| 764 | 
         
            +
                        pooled_prompt_embeds=pooled_prompt_embeds,
         
     | 
| 765 | 
         
            +
                        device=device,
         
     | 
| 766 | 
         
            +
                        num_images_per_prompt=num_images_per_prompt,
         
     | 
| 767 | 
         
            +
                        max_sequence_length=max_sequence_length,
         
     | 
| 768 | 
         
            +
                        lora_scale=lora_scale,
         
     | 
| 769 | 
         
            +
                    )
         
     | 
| 770 | 
         
            +
                            
         
     | 
| 771 | 
         
            +
                    # 4. Prepare latent variables
         
     | 
| 772 | 
         
            +
                    num_channels_latents = self.transformer.config.in_channels // 4
         
     | 
| 773 | 
         
            +
                    latents, latent_image_ids = self.prepare_latents(
         
     | 
| 774 | 
         
            +
                        batch_size * num_images_per_prompt,
         
     | 
| 775 | 
         
            +
                        num_channels_latents,
         
     | 
| 776 | 
         
            +
                        height,
         
     | 
| 777 | 
         
            +
                        width,
         
     | 
| 778 | 
         
            +
                        prompt_embeds.dtype,
         
     | 
| 779 | 
         
            +
                        device,
         
     | 
| 780 | 
         
            +
                        generator,
         
     | 
| 781 | 
         
            +
                        latents,
         
     | 
| 782 | 
         
            +
                    )
         
     | 
| 783 | 
         
            +
             
     | 
| 784 | 
         
            +
                    # 5. Prepare timesteps
         
     | 
| 785 | 
         
            +
                    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
         
     | 
| 786 | 
         
            +
                    image_seq_len = latents.shape[1]
         
     | 
| 787 | 
         
            +
                    mu = calculate_shift(
         
     | 
| 788 | 
         
            +
                        image_seq_len,
         
     | 
| 789 | 
         
            +
                        self.scheduler.config.base_image_seq_len,
         
     | 
| 790 | 
         
            +
                        self.scheduler.config.max_image_seq_len,
         
     | 
| 791 | 
         
            +
                        self.scheduler.config.base_shift,
         
     | 
| 792 | 
         
            +
                        self.scheduler.config.max_shift,
         
     | 
| 793 | 
         
            +
                    )
         
     | 
| 794 | 
         
            +
                    timesteps, num_inference_steps = retrieve_timesteps(
         
     | 
| 795 | 
         
            +
                        self.scheduler,
         
     | 
| 796 | 
         
            +
                        num_inference_steps,
         
     | 
| 797 | 
         
            +
                        device,
         
     | 
| 798 | 
         
            +
                        timesteps,
         
     | 
| 799 | 
         
            +
                        sigmas,
         
     | 
| 800 | 
         
            +
                        mu=mu,
         
     | 
| 801 | 
         
            +
                    )
         
     | 
| 802 | 
         
            +
                    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
         
     | 
| 803 | 
         
            +
                    self._num_timesteps = len(timesteps)
         
     | 
| 804 | 
         
            +
             
     | 
| 805 | 
         
            +
                    # handle guidance
         
     | 
| 806 | 
         
            +
                    if self.transformer.config.guidance_embeds:
         
     | 
| 807 | 
         
            +
                        guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
         
     | 
| 808 | 
         
            +
                        guidance = guidance.expand(latents.shape[0])
         
     | 
| 809 | 
         
            +
                    else:
         
     | 
| 810 | 
         
            +
                        guidance = None
         
     | 
| 811 | 
         
            +
                    
         
     | 
| 812 | 
         
            +
                    # 6. Denoising loop
         
     | 
| 813 | 
         
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         
     | 
| 814 | 
         
            +
                        for i, t in enumerate(timesteps):
         
     | 
| 815 | 
         
            +
                            if self.interrupt:
         
     | 
| 816 | 
         
            +
                                continue
         
     | 
| 817 | 
         
            +
                            
         
     | 
| 818 | 
         
            +
                            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         
     | 
| 819 | 
         
            +
                            timestep = t.expand(latents.shape[0]).to(latents.dtype)
         
     | 
| 820 | 
         
            +
             
     | 
| 821 | 
         
            +
                            noise_pred = self.transformer(
         
     | 
| 822 | 
         
            +
                                hidden_states=latents,
         
     | 
| 823 | 
         
            +
                                timestep=timestep / 1000,
         
     | 
| 824 | 
         
            +
                                guidance=guidance,
         
     | 
| 825 | 
         
            +
                                pooled_projections=pooled_prompt_embeds,
         
     | 
| 826 | 
         
            +
                                encoder_hidden_states=prompt_embeds,
         
     | 
| 827 | 
         
            +
                                image_emb=image_emb,
         
     | 
| 828 | 
         
            +
                                txt_ids=text_ids,
         
     | 
| 829 | 
         
            +
                                img_ids=latent_image_ids,
         
     | 
| 830 | 
         
            +
                                joint_attention_kwargs=self.joint_attention_kwargs,
         
     | 
| 831 | 
         
            +
                                return_dict=False,
         
     | 
| 832 | 
         
            +
                            )[0]
         
     | 
| 833 | 
         
            +
             
     | 
| 834 | 
         
            +
                            # compute the previous noisy sample x_t -> x_t-1
         
     | 
| 835 | 
         
            +
                            latents_dtype = latents.dtype
         
     | 
| 836 | 
         
            +
                            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
         
     | 
| 837 | 
         
            +
             
     | 
| 838 | 
         
            +
                            if latents.dtype != latents_dtype:
         
     | 
| 839 | 
         
            +
                                if torch.backends.mps.is_available():
         
     | 
| 840 | 
         
            +
                                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
         
     | 
| 841 | 
         
            +
                                    latents = latents.to(latents_dtype)
         
     | 
| 842 | 
         
            +
                            
         
     | 
| 843 | 
         
            +
                            if callback_on_step_end is not None:
         
     | 
| 844 | 
         
            +
                                callback_kwargs = {}
         
     | 
| 845 | 
         
            +
                                for k in callback_on_step_end_tensor_inputs:
         
     | 
| 846 | 
         
            +
                                    callback_kwargs[k] = locals()[k]
         
     | 
| 847 | 
         
            +
                                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
         
     | 
| 848 | 
         
            +
             
     | 
| 849 | 
         
            +
                                latents = callback_outputs.pop("latents", latents)
         
     | 
| 850 | 
         
            +
                                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
         
     | 
| 851 | 
         
            +
             
     | 
| 852 | 
         
            +
                            # call the callback, if provided
         
     | 
| 853 | 
         
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         
     | 
| 854 | 
         
            +
                                progress_bar.update()
         
     | 
| 855 | 
         
            +
             
     | 
| 856 | 
         
            +
                            if XLA_AVAILABLE:
         
     | 
| 857 | 
         
            +
                                xm.mark_step()
         
     | 
| 858 | 
         
            +
             
     | 
| 859 | 
         
            +
                    if output_type == "latent":
         
     | 
| 860 | 
         
            +
                        image = latents
         
     | 
| 861 | 
         
            +
             
     | 
| 862 | 
         
            +
                    else:
         
     | 
| 863 | 
         
            +
                        latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
         
     | 
| 864 | 
         
            +
                        latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
         
     | 
| 865 | 
         
            +
                        image = self.vae.decode(latents, return_dict=False)[0]
         
     | 
| 866 | 
         
            +
                        image = self.image_processor.postprocess(image, output_type=output_type)
         
     | 
| 867 | 
         
            +
             
     | 
| 868 | 
         
            +
                    # Offload all models
         
     | 
| 869 | 
         
            +
                    self.maybe_free_model_hooks()
         
     | 
| 870 | 
         
            +
             
     | 
| 871 | 
         
            +
                    if not return_dict:
         
     | 
| 872 | 
         
            +
                        return (image,)
         
     | 
| 873 | 
         
            +
             
     | 
| 874 | 
         
            +
                    return FluxPipelineOutput(images=image)
         
     | 
    	
        pipeline_stable_diffusion_3_ipa.py
    ADDED
    
    | 
         @@ -0,0 +1,1235 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            # limitations under the License.
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            import inspect
         
     | 
| 16 | 
         
            +
            from typing import Any, Callable, Dict, List, Optional, Union
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            import torch
         
     | 
| 19 | 
         
            +
            import torch.nn as nn
         
     | 
| 20 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 21 | 
         
            +
            from transformers import (
         
     | 
| 22 | 
         
            +
                CLIPTextModelWithProjection,
         
     | 
| 23 | 
         
            +
                CLIPTokenizer,
         
     | 
| 24 | 
         
            +
                T5EncoderModel,
         
     | 
| 25 | 
         
            +
                T5TokenizerFast,
         
     | 
| 26 | 
         
            +
            )
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            from diffusers.image_processor import VaeImageProcessor
         
     | 
| 29 | 
         
            +
            from diffusers.loaders import FromSingleFileMixin, SD3LoraLoaderMixin
         
     | 
| 30 | 
         
            +
            from diffusers.models.autoencoders import AutoencoderKL
         
     | 
| 31 | 
         
            +
            from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
         
     | 
| 32 | 
         
            +
            from diffusers.utils import (
         
     | 
| 33 | 
         
            +
                USE_PEFT_BACKEND,
         
     | 
| 34 | 
         
            +
                is_torch_xla_available,
         
     | 
| 35 | 
         
            +
                logging,
         
     | 
| 36 | 
         
            +
                replace_example_docstring,
         
     | 
| 37 | 
         
            +
                scale_lora_layers,
         
     | 
| 38 | 
         
            +
                unscale_lora_layers,
         
     | 
| 39 | 
         
            +
            )
         
     | 
| 40 | 
         
            +
            from diffusers.utils.torch_utils import randn_tensor
         
     | 
| 41 | 
         
            +
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline
         
     | 
| 42 | 
         
            +
            from diffusers.pipelines.stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            from models.resampler import TimeResampler
         
     | 
| 45 | 
         
            +
            from models.transformer_sd3 import SD3Transformer2DModel
         
     | 
| 46 | 
         
            +
            from diffusers.models.normalization import RMSNorm
         
     | 
| 47 | 
         
            +
            from einops import rearrange
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            if is_torch_xla_available():
         
     | 
| 51 | 
         
            +
                import torch_xla.core.xla_model as xm
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                XLA_AVAILABLE = True
         
     | 
| 54 | 
         
            +
            else:
         
     | 
| 55 | 
         
            +
                XLA_AVAILABLE = False
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
            EXAMPLE_DOC_STRING = """
         
     | 
| 61 | 
         
            +
                Examples:
         
     | 
| 62 | 
         
            +
                    ```py
         
     | 
| 63 | 
         
            +
                    >>> import torch
         
     | 
| 64 | 
         
            +
                    >>> from diffusers import StableDiffusion3Pipeline
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                    >>> pipe = StableDiffusion3Pipeline.from_pretrained(
         
     | 
| 67 | 
         
            +
                    ...     "stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
         
     | 
| 68 | 
         
            +
                    ... )
         
     | 
| 69 | 
         
            +
                    >>> pipe.to("cuda")
         
     | 
| 70 | 
         
            +
                    >>> prompt = "A cat holding a sign that says hello world"
         
     | 
| 71 | 
         
            +
                    >>> image = pipe(prompt).images[0]
         
     | 
| 72 | 
         
            +
                    >>> image.save("sd3.png")
         
     | 
| 73 | 
         
            +
                    ```
         
     | 
| 74 | 
         
            +
            """
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
            class AdaLayerNorm(nn.Module):
         
     | 
| 78 | 
         
            +
                """
         
     | 
| 79 | 
         
            +
                Norm layer adaptive layer norm zero (adaLN-Zero).
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                Parameters:
         
     | 
| 82 | 
         
            +
                    embedding_dim (`int`): The size of each embedding vector.
         
     | 
| 83 | 
         
            +
                    num_embeddings (`int`): The size of the embeddings dictionary.
         
     | 
| 84 | 
         
            +
                """
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                def __init__(self, embedding_dim: int, time_embedding_dim=None, mode='normal'):
         
     | 
| 87 | 
         
            +
                    super().__init__()
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                    self.silu = nn.SiLU()
         
     | 
| 90 | 
         
            +
                    num_params_dict = dict(
         
     | 
| 91 | 
         
            +
                        zero=6,
         
     | 
| 92 | 
         
            +
                        normal=2,
         
     | 
| 93 | 
         
            +
                    )
         
     | 
| 94 | 
         
            +
                    num_params = num_params_dict[mode]
         
     | 
| 95 | 
         
            +
                    self.linear = nn.Linear(time_embedding_dim or embedding_dim, num_params * embedding_dim, bias=True)
         
     | 
| 96 | 
         
            +
                    self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
         
     | 
| 97 | 
         
            +
                    self.mode = mode
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                def forward(
         
     | 
| 100 | 
         
            +
                    self,
         
     | 
| 101 | 
         
            +
                    x,
         
     | 
| 102 | 
         
            +
                    hidden_dtype = None,
         
     | 
| 103 | 
         
            +
                    emb = None,
         
     | 
| 104 | 
         
            +
                ):
         
     | 
| 105 | 
         
            +
                    emb = self.linear(self.silu(emb))
         
     | 
| 106 | 
         
            +
                    if self.mode == 'normal':
         
     | 
| 107 | 
         
            +
                        shift_msa, scale_msa = emb.chunk(2, dim=1)
         
     | 
| 108 | 
         
            +
                        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
         
     | 
| 109 | 
         
            +
                        return x
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                    elif self.mode == 'zero':
         
     | 
| 112 | 
         
            +
                        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
         
     | 
| 113 | 
         
            +
                        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
         
     | 
| 114 | 
         
            +
                        return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
            class JointIPAttnProcessor(torch.nn.Module):
         
     | 
| 118 | 
         
            +
                """Attention processor used typically in processing the SD3-like self-attention projections."""
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
                def __init__(
         
     | 
| 121 | 
         
            +
                    self,
         
     | 
| 122 | 
         
            +
                    hidden_size=None,
         
     | 
| 123 | 
         
            +
                    cross_attention_dim=None,
         
     | 
| 124 | 
         
            +
                    ip_hidden_states_dim=None,
         
     | 
| 125 | 
         
            +
                    ip_encoder_hidden_states_dim=None,
         
     | 
| 126 | 
         
            +
                    head_dim=None,
         
     | 
| 127 | 
         
            +
                    timesteps_emb_dim=1280,
         
     | 
| 128 | 
         
            +
                ):
         
     | 
| 129 | 
         
            +
                    super().__init__()
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                    self.norm_ip = AdaLayerNorm(ip_hidden_states_dim, time_embedding_dim=timesteps_emb_dim)
         
     | 
| 132 | 
         
            +
                    self.to_k_ip = nn.Linear(ip_hidden_states_dim, hidden_size, bias=False)
         
     | 
| 133 | 
         
            +
                    self.to_v_ip = nn.Linear(ip_hidden_states_dim, hidden_size, bias=False)
         
     | 
| 134 | 
         
            +
                    self.norm_q = RMSNorm(head_dim, 1e-6)
         
     | 
| 135 | 
         
            +
                    self.norm_k = RMSNorm(head_dim, 1e-6)
         
     | 
| 136 | 
         
            +
                    self.norm_ip_k = RMSNorm(head_dim, 1e-6)
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                def __call__(
         
     | 
| 140 | 
         
            +
                    self,
         
     | 
| 141 | 
         
            +
                    attn,
         
     | 
| 142 | 
         
            +
                    hidden_states: torch.FloatTensor,
         
     | 
| 143 | 
         
            +
                    encoder_hidden_states: torch.FloatTensor = None,
         
     | 
| 144 | 
         
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         
     | 
| 145 | 
         
            +
                    emb_dict=None,
         
     | 
| 146 | 
         
            +
                    *args,
         
     | 
| 147 | 
         
            +
                    **kwargs,
         
     | 
| 148 | 
         
            +
                ) -> torch.FloatTensor:
         
     | 
| 149 | 
         
            +
                    residual = hidden_states
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                    batch_size = hidden_states.shape[0]
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                    # `sample` projections.
         
     | 
| 154 | 
         
            +
                    query = attn.to_q(hidden_states)
         
     | 
| 155 | 
         
            +
                    key = attn.to_k(hidden_states)
         
     | 
| 156 | 
         
            +
                    value = attn.to_v(hidden_states)
         
     | 
| 157 | 
         
            +
                    img_query = query
         
     | 
| 158 | 
         
            +
                    img_key = key
         
     | 
| 159 | 
         
            +
                    img_value = value
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                    inner_dim = key.shape[-1]
         
     | 
| 162 | 
         
            +
                    head_dim = inner_dim // attn.heads
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                    query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         
     | 
| 165 | 
         
            +
                    key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         
     | 
| 166 | 
         
            +
                    value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                    if attn.norm_q is not None:
         
     | 
| 169 | 
         
            +
                        query = attn.norm_q(query)
         
     | 
| 170 | 
         
            +
                    if attn.norm_k is not None:
         
     | 
| 171 | 
         
            +
                        key = attn.norm_k(key)
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                    # `context` projections.
         
     | 
| 174 | 
         
            +
                    if encoder_hidden_states is not None:
         
     | 
| 175 | 
         
            +
                        encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
         
     | 
| 176 | 
         
            +
                        encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
         
     | 
| 177 | 
         
            +
                        encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                        encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
         
     | 
| 180 | 
         
            +
                            batch_size, -1, attn.heads, head_dim
         
     | 
| 181 | 
         
            +
                        ).transpose(1, 2)
         
     | 
| 182 | 
         
            +
                        encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
         
     | 
| 183 | 
         
            +
                            batch_size, -1, attn.heads, head_dim
         
     | 
| 184 | 
         
            +
                        ).transpose(1, 2)
         
     | 
| 185 | 
         
            +
                        encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
         
     | 
| 186 | 
         
            +
                            batch_size, -1, attn.heads, head_dim
         
     | 
| 187 | 
         
            +
                        ).transpose(1, 2)
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
                        if attn.norm_added_q is not None:
         
     | 
| 190 | 
         
            +
                            encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
         
     | 
| 191 | 
         
            +
                        if attn.norm_added_k is not None:
         
     | 
| 192 | 
         
            +
                            encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                        query = torch.cat([query, encoder_hidden_states_query_proj], dim=2)
         
     | 
| 195 | 
         
            +
                        key = torch.cat([key, encoder_hidden_states_key_proj], dim=2)
         
     | 
| 196 | 
         
            +
                        value = torch.cat([value, encoder_hidden_states_value_proj], dim=2)
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                    hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
         
     | 
| 199 | 
         
            +
                    hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
         
     | 
| 200 | 
         
            +
                    hidden_states = hidden_states.to(query.dtype)
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                    if encoder_hidden_states is not None:
         
     | 
| 203 | 
         
            +
                        # Split the attention outputs.
         
     | 
| 204 | 
         
            +
                        hidden_states, encoder_hidden_states = (
         
     | 
| 205 | 
         
            +
                            hidden_states[:, : residual.shape[1]],
         
     | 
| 206 | 
         
            +
                            hidden_states[:, residual.shape[1] :],
         
     | 
| 207 | 
         
            +
                        )
         
     | 
| 208 | 
         
            +
                        if not attn.context_pre_only:
         
     | 
| 209 | 
         
            +
                            encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                    # IPadapter
         
     | 
| 213 | 
         
            +
                    ip_hidden_states = emb_dict.get('ip_hidden_states', None)
         
     | 
| 214 | 
         
            +
                    ip_hidden_states = self.get_ip_hidden_states(
         
     | 
| 215 | 
         
            +
                        attn,
         
     | 
| 216 | 
         
            +
                        img_query,
         
     | 
| 217 | 
         
            +
                        ip_hidden_states,
         
     | 
| 218 | 
         
            +
                        img_key,
         
     | 
| 219 | 
         
            +
                        img_value,
         
     | 
| 220 | 
         
            +
                        None,
         
     | 
| 221 | 
         
            +
                        None,
         
     | 
| 222 | 
         
            +
                        emb_dict['temb'],
         
     | 
| 223 | 
         
            +
                    )
         
     | 
| 224 | 
         
            +
                    if ip_hidden_states is not None:
         
     | 
| 225 | 
         
            +
                        hidden_states = hidden_states + ip_hidden_states * emb_dict.get('scale', 1.0)
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
                    # linear proj
         
     | 
| 229 | 
         
            +
                    hidden_states = attn.to_out[0](hidden_states)
         
     | 
| 230 | 
         
            +
                    # dropout
         
     | 
| 231 | 
         
            +
                    hidden_states = attn.to_out[1](hidden_states)
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                    if encoder_hidden_states is not None:
         
     | 
| 234 | 
         
            +
                        return hidden_states, encoder_hidden_states
         
     | 
| 235 | 
         
            +
                    else:
         
     | 
| 236 | 
         
            +
                        return hidden_states
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
                def get_ip_hidden_states(self, attn, query, ip_hidden_states, img_key=None, img_value=None, text_key=None, text_value=None, temb=None):
         
     | 
| 240 | 
         
            +
                    if ip_hidden_states is None:
         
     | 
| 241 | 
         
            +
                        return None
         
     | 
| 242 | 
         
            +
                    
         
     | 
| 243 | 
         
            +
                    if not hasattr(self, 'to_k_ip') or not hasattr(self, 'to_v_ip'):
         
     | 
| 244 | 
         
            +
                        return None
         
     | 
| 245 | 
         
            +
             
     | 
| 246 | 
         
            +
                    # norm ip input
         
     | 
| 247 | 
         
            +
                    norm_ip_hidden_states = self.norm_ip(ip_hidden_states, emb=temb)
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                    # to k and v
         
     | 
| 250 | 
         
            +
                    ip_key = self.to_k_ip(norm_ip_hidden_states)
         
     | 
| 251 | 
         
            +
                    ip_value = self.to_v_ip(norm_ip_hidden_states)
         
     | 
| 252 | 
         
            +
             
     | 
| 253 | 
         
            +
                    # reshape
         
     | 
| 254 | 
         
            +
                    query = rearrange(query, 'b l (h d) -> b h l d', h=attn.heads)
         
     | 
| 255 | 
         
            +
                    img_key = rearrange(img_key, 'b l (h d) -> b h l d', h=attn.heads)
         
     | 
| 256 | 
         
            +
                    img_value = rearrange(img_value, 'b l (h d) -> b h l d', h=attn.heads)
         
     | 
| 257 | 
         
            +
                    ip_key = rearrange(ip_key, 'b l (h d) -> b h l d', h=attn.heads)
         
     | 
| 258 | 
         
            +
                    ip_value = rearrange(ip_value, 'b l (h d) -> b h l d', h=attn.heads)
         
     | 
| 259 | 
         
            +
             
     | 
| 260 | 
         
            +
                    # norm
         
     | 
| 261 | 
         
            +
                    query = self.norm_q(query)
         
     | 
| 262 | 
         
            +
                    img_key = self.norm_k(img_key)
         
     | 
| 263 | 
         
            +
                    ip_key = self.norm_ip_k(ip_key)
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
                    # cat img
         
     | 
| 266 | 
         
            +
                    key = torch.cat([img_key, ip_key], dim=2)
         
     | 
| 267 | 
         
            +
                    value = torch.cat([img_value, ip_value], dim=2)
         
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
                    # 
         
     | 
| 270 | 
         
            +
                    ip_hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
         
     | 
| 271 | 
         
            +
                    ip_hidden_states = rearrange(ip_hidden_states, 'b h l d -> b l (h d)')
         
     | 
| 272 | 
         
            +
                    ip_hidden_states = ip_hidden_states.to(query.dtype)
         
     | 
| 273 | 
         
            +
                    return ip_hidden_states
         
     | 
| 274 | 
         
            +
             
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
            # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
         
     | 
| 277 | 
         
            +
            def retrieve_timesteps(
         
     | 
| 278 | 
         
            +
                scheduler,
         
     | 
| 279 | 
         
            +
                num_inference_steps: Optional[int] = None,
         
     | 
| 280 | 
         
            +
                device: Optional[Union[str, torch.device]] = None,
         
     | 
| 281 | 
         
            +
                timesteps: Optional[List[int]] = None,
         
     | 
| 282 | 
         
            +
                sigmas: Optional[List[float]] = None,
         
     | 
| 283 | 
         
            +
                **kwargs,
         
     | 
| 284 | 
         
            +
            ):
         
     | 
| 285 | 
         
            +
                """
         
     | 
| 286 | 
         
            +
                Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
         
     | 
| 287 | 
         
            +
                custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                Args:
         
     | 
| 290 | 
         
            +
                    scheduler (`SchedulerMixin`):
         
     | 
| 291 | 
         
            +
                        The scheduler to get timesteps from.
         
     | 
| 292 | 
         
            +
                    num_inference_steps (`int`):
         
     | 
| 293 | 
         
            +
                        The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
         
     | 
| 294 | 
         
            +
                        must be `None`.
         
     | 
| 295 | 
         
            +
                    device (`str` or `torch.device`, *optional*):
         
     | 
| 296 | 
         
            +
                        The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
         
     | 
| 297 | 
         
            +
                    timesteps (`List[int]`, *optional*):
         
     | 
| 298 | 
         
            +
                        Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
         
     | 
| 299 | 
         
            +
                        `num_inference_steps` and `sigmas` must be `None`.
         
     | 
| 300 | 
         
            +
                    sigmas (`List[float]`, *optional*):
         
     | 
| 301 | 
         
            +
                        Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
         
     | 
| 302 | 
         
            +
                        `num_inference_steps` and `timesteps` must be `None`.
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                Returns:
         
     | 
| 305 | 
         
            +
                    `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
         
     | 
| 306 | 
         
            +
                    second element is the number of inference steps.
         
     | 
| 307 | 
         
            +
                """
         
     | 
| 308 | 
         
            +
                if timesteps is not None and sigmas is not None:
         
     | 
| 309 | 
         
            +
                    raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
         
     | 
| 310 | 
         
            +
                if timesteps is not None:
         
     | 
| 311 | 
         
            +
                    accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
         
     | 
| 312 | 
         
            +
                    if not accepts_timesteps:
         
     | 
| 313 | 
         
            +
                        raise ValueError(
         
     | 
| 314 | 
         
            +
                            f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
         
     | 
| 315 | 
         
            +
                            f" timestep schedules. Please check whether you are using the correct scheduler."
         
     | 
| 316 | 
         
            +
                        )
         
     | 
| 317 | 
         
            +
                    scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
         
     | 
| 318 | 
         
            +
                    timesteps = scheduler.timesteps
         
     | 
| 319 | 
         
            +
                    num_inference_steps = len(timesteps)
         
     | 
| 320 | 
         
            +
                elif sigmas is not None:
         
     | 
| 321 | 
         
            +
                    accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
         
     | 
| 322 | 
         
            +
                    if not accept_sigmas:
         
     | 
| 323 | 
         
            +
                        raise ValueError(
         
     | 
| 324 | 
         
            +
                            f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
         
     | 
| 325 | 
         
            +
                            f" sigmas schedules. Please check whether you are using the correct scheduler."
         
     | 
| 326 | 
         
            +
                        )
         
     | 
| 327 | 
         
            +
                    scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
         
     | 
| 328 | 
         
            +
                    timesteps = scheduler.timesteps
         
     | 
| 329 | 
         
            +
                    num_inference_steps = len(timesteps)
         
     | 
| 330 | 
         
            +
                else:
         
     | 
| 331 | 
         
            +
                    scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
         
     | 
| 332 | 
         
            +
                    timesteps = scheduler.timesteps
         
     | 
| 333 | 
         
            +
                return timesteps, num_inference_steps
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
            class StableDiffusion3Pipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin):
         
     | 
| 337 | 
         
            +
                r"""
         
     | 
| 338 | 
         
            +
                Args:
         
     | 
| 339 | 
         
            +
                    transformer ([`SD3Transformer2DModel`]):
         
     | 
| 340 | 
         
            +
                        Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
         
     | 
| 341 | 
         
            +
                    scheduler ([`FlowMatchEulerDiscreteScheduler`]):
         
     | 
| 342 | 
         
            +
                        A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
         
     | 
| 343 | 
         
            +
                    vae ([`AutoencoderKL`]):
         
     | 
| 344 | 
         
            +
                        Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
         
     | 
| 345 | 
         
            +
                    text_encoder ([`CLIPTextModelWithProjection`]):
         
     | 
| 346 | 
         
            +
                        [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
         
     | 
| 347 | 
         
            +
                        specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
         
     | 
| 348 | 
         
            +
                        with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
         
     | 
| 349 | 
         
            +
                        as its dimension.
         
     | 
| 350 | 
         
            +
                    text_encoder_2 ([`CLIPTextModelWithProjection`]):
         
     | 
| 351 | 
         
            +
                        [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
         
     | 
| 352 | 
         
            +
                        specifically the
         
     | 
| 353 | 
         
            +
                        [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
         
     | 
| 354 | 
         
            +
                        variant.
         
     | 
| 355 | 
         
            +
                    text_encoder_3 ([`T5EncoderModel`]):
         
     | 
| 356 | 
         
            +
                        Frozen text-encoder. Stable Diffusion 3 uses
         
     | 
| 357 | 
         
            +
                        [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
         
     | 
| 358 | 
         
            +
                        [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
         
     | 
| 359 | 
         
            +
                    tokenizer (`CLIPTokenizer`):
         
     | 
| 360 | 
         
            +
                        Tokenizer of class
         
     | 
| 361 | 
         
            +
                        [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
         
     | 
| 362 | 
         
            +
                    tokenizer_2 (`CLIPTokenizer`):
         
     | 
| 363 | 
         
            +
                        Second Tokenizer of class
         
     | 
| 364 | 
         
            +
                        [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
         
     | 
| 365 | 
         
            +
                    tokenizer_3 (`T5TokenizerFast`):
         
     | 
| 366 | 
         
            +
                        Tokenizer of class
         
     | 
| 367 | 
         
            +
                        [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
         
     | 
| 368 | 
         
            +
                """
         
     | 
| 369 | 
         
            +
             
     | 
| 370 | 
         
            +
                model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae"
         
     | 
| 371 | 
         
            +
                _optional_components = []
         
     | 
| 372 | 
         
            +
                _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
         
     | 
| 373 | 
         
            +
             
     | 
| 374 | 
         
            +
                def __init__(
         
     | 
| 375 | 
         
            +
                    self,
         
     | 
| 376 | 
         
            +
                    transformer: SD3Transformer2DModel,
         
     | 
| 377 | 
         
            +
                    scheduler: FlowMatchEulerDiscreteScheduler,
         
     | 
| 378 | 
         
            +
                    vae: AutoencoderKL,
         
     | 
| 379 | 
         
            +
                    text_encoder: CLIPTextModelWithProjection,
         
     | 
| 380 | 
         
            +
                    tokenizer: CLIPTokenizer,
         
     | 
| 381 | 
         
            +
                    text_encoder_2: CLIPTextModelWithProjection,
         
     | 
| 382 | 
         
            +
                    tokenizer_2: CLIPTokenizer,
         
     | 
| 383 | 
         
            +
                    text_encoder_3: T5EncoderModel,
         
     | 
| 384 | 
         
            +
                    tokenizer_3: T5TokenizerFast,
         
     | 
| 385 | 
         
            +
                ):
         
     | 
| 386 | 
         
            +
                    super().__init__()
         
     | 
| 387 | 
         
            +
             
     | 
| 388 | 
         
            +
                    self.register_modules(
         
     | 
| 389 | 
         
            +
                        vae=vae,
         
     | 
| 390 | 
         
            +
                        text_encoder=text_encoder,
         
     | 
| 391 | 
         
            +
                        text_encoder_2=text_encoder_2,
         
     | 
| 392 | 
         
            +
                        text_encoder_3=text_encoder_3,
         
     | 
| 393 | 
         
            +
                        tokenizer=tokenizer,
         
     | 
| 394 | 
         
            +
                        tokenizer_2=tokenizer_2,
         
     | 
| 395 | 
         
            +
                        tokenizer_3=tokenizer_3,
         
     | 
| 396 | 
         
            +
                        transformer=transformer,
         
     | 
| 397 | 
         
            +
                        scheduler=scheduler,
         
     | 
| 398 | 
         
            +
                    )
         
     | 
| 399 | 
         
            +
                    self.vae_scale_factor = (
         
     | 
| 400 | 
         
            +
                        2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
         
     | 
| 401 | 
         
            +
                    )
         
     | 
| 402 | 
         
            +
                    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
         
     | 
| 403 | 
         
            +
                    self.tokenizer_max_length = (
         
     | 
| 404 | 
         
            +
                        self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
         
     | 
| 405 | 
         
            +
                    )
         
     | 
| 406 | 
         
            +
                    self.default_sample_size = (
         
     | 
| 407 | 
         
            +
                        self.transformer.config.sample_size
         
     | 
| 408 | 
         
            +
                        if hasattr(self, "transformer") and self.transformer is not None
         
     | 
| 409 | 
         
            +
                        else 128
         
     | 
| 410 | 
         
            +
                    )
         
     | 
| 411 | 
         
            +
             
     | 
| 412 | 
         
            +
                def _get_t5_prompt_embeds(
         
     | 
| 413 | 
         
            +
                    self,
         
     | 
| 414 | 
         
            +
                    prompt: Union[str, List[str]] = None,
         
     | 
| 415 | 
         
            +
                    num_images_per_prompt: int = 1,
         
     | 
| 416 | 
         
            +
                    max_sequence_length: int = 256,
         
     | 
| 417 | 
         
            +
                    device: Optional[torch.device] = None,
         
     | 
| 418 | 
         
            +
                    dtype: Optional[torch.dtype] = None,
         
     | 
| 419 | 
         
            +
                ):
         
     | 
| 420 | 
         
            +
                    device = device or self._execution_device
         
     | 
| 421 | 
         
            +
                    dtype = dtype or self.text_encoder.dtype
         
     | 
| 422 | 
         
            +
             
     | 
| 423 | 
         
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         
     | 
| 424 | 
         
            +
                    batch_size = len(prompt)
         
     | 
| 425 | 
         
            +
             
     | 
| 426 | 
         
            +
                    if self.text_encoder_3 is None:
         
     | 
| 427 | 
         
            +
                        return torch.zeros(
         
     | 
| 428 | 
         
            +
                            (
         
     | 
| 429 | 
         
            +
                                batch_size * num_images_per_prompt,
         
     | 
| 430 | 
         
            +
                                self.tokenizer_max_length,
         
     | 
| 431 | 
         
            +
                                self.transformer.config.joint_attention_dim,
         
     | 
| 432 | 
         
            +
                            ),
         
     | 
| 433 | 
         
            +
                            device=device,
         
     | 
| 434 | 
         
            +
                            dtype=dtype,
         
     | 
| 435 | 
         
            +
                        )
         
     | 
| 436 | 
         
            +
             
     | 
| 437 | 
         
            +
                    text_inputs = self.tokenizer_3(
         
     | 
| 438 | 
         
            +
                        prompt,
         
     | 
| 439 | 
         
            +
                        padding="max_length",
         
     | 
| 440 | 
         
            +
                        max_length=max_sequence_length,
         
     | 
| 441 | 
         
            +
                        truncation=True,
         
     | 
| 442 | 
         
            +
                        add_special_tokens=True,
         
     | 
| 443 | 
         
            +
                        return_tensors="pt",
         
     | 
| 444 | 
         
            +
                    )
         
     | 
| 445 | 
         
            +
                    text_input_ids = text_inputs.input_ids
         
     | 
| 446 | 
         
            +
                    untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
         
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
            +
                    if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
         
     | 
| 449 | 
         
            +
                        removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
         
     | 
| 450 | 
         
            +
                        logger.warning(
         
     | 
| 451 | 
         
            +
                            "The following part of your input was truncated because `max_sequence_length` is set to "
         
     | 
| 452 | 
         
            +
                            f" {max_sequence_length} tokens: {removed_text}"
         
     | 
| 453 | 
         
            +
                        )
         
     | 
| 454 | 
         
            +
             
     | 
| 455 | 
         
            +
                    prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
         
     | 
| 456 | 
         
            +
             
     | 
| 457 | 
         
            +
                    dtype = self.text_encoder_3.dtype
         
     | 
| 458 | 
         
            +
                    prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
         
     | 
| 459 | 
         
            +
             
     | 
| 460 | 
         
            +
                    _, seq_len, _ = prompt_embeds.shape
         
     | 
| 461 | 
         
            +
             
     | 
| 462 | 
         
            +
                    # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
         
     | 
| 463 | 
         
            +
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         
     | 
| 464 | 
         
            +
                    prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
         
     | 
| 465 | 
         
            +
             
     | 
| 466 | 
         
            +
                    return prompt_embeds
         
     | 
| 467 | 
         
            +
             
     | 
| 468 | 
         
            +
                def _get_clip_prompt_embeds(
         
     | 
| 469 | 
         
            +
                    self,
         
     | 
| 470 | 
         
            +
                    prompt: Union[str, List[str]],
         
     | 
| 471 | 
         
            +
                    num_images_per_prompt: int = 1,
         
     | 
| 472 | 
         
            +
                    device: Optional[torch.device] = None,
         
     | 
| 473 | 
         
            +
                    clip_skip: Optional[int] = None,
         
     | 
| 474 | 
         
            +
                    clip_model_index: int = 0,
         
     | 
| 475 | 
         
            +
                ):
         
     | 
| 476 | 
         
            +
                    device = device or self._execution_device
         
     | 
| 477 | 
         
            +
             
     | 
| 478 | 
         
            +
                    clip_tokenizers = [self.tokenizer, self.tokenizer_2]
         
     | 
| 479 | 
         
            +
                    clip_text_encoders = [self.text_encoder, self.text_encoder_2]
         
     | 
| 480 | 
         
            +
             
     | 
| 481 | 
         
            +
                    tokenizer = clip_tokenizers[clip_model_index]
         
     | 
| 482 | 
         
            +
                    text_encoder = clip_text_encoders[clip_model_index]
         
     | 
| 483 | 
         
            +
             
     | 
| 484 | 
         
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         
     | 
| 485 | 
         
            +
                    batch_size = len(prompt)
         
     | 
| 486 | 
         
            +
             
     | 
| 487 | 
         
            +
                    text_inputs = tokenizer(
         
     | 
| 488 | 
         
            +
                        prompt,
         
     | 
| 489 | 
         
            +
                        padding="max_length",
         
     | 
| 490 | 
         
            +
                        max_length=self.tokenizer_max_length,
         
     | 
| 491 | 
         
            +
                        truncation=True,
         
     | 
| 492 | 
         
            +
                        return_tensors="pt",
         
     | 
| 493 | 
         
            +
                    )
         
     | 
| 494 | 
         
            +
             
     | 
| 495 | 
         
            +
                    text_input_ids = text_inputs.input_ids
         
     | 
| 496 | 
         
            +
                    untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
         
     | 
| 497 | 
         
            +
                    if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
         
     | 
| 498 | 
         
            +
                        removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
         
     | 
| 499 | 
         
            +
                        logger.warning(
         
     | 
| 500 | 
         
            +
                            "The following part of your input was truncated because CLIP can only handle sequences up to"
         
     | 
| 501 | 
         
            +
                            f" {self.tokenizer_max_length} tokens: {removed_text}"
         
     | 
| 502 | 
         
            +
                        )
         
     | 
| 503 | 
         
            +
                    prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
         
     | 
| 504 | 
         
            +
                    pooled_prompt_embeds = prompt_embeds[0]
         
     | 
| 505 | 
         
            +
             
     | 
| 506 | 
         
            +
                    if clip_skip is None:
         
     | 
| 507 | 
         
            +
                        prompt_embeds = prompt_embeds.hidden_states[-2]
         
     | 
| 508 | 
         
            +
                    else:
         
     | 
| 509 | 
         
            +
                        prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
         
     | 
| 510 | 
         
            +
             
     | 
| 511 | 
         
            +
                    prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
         
     | 
| 512 | 
         
            +
             
     | 
| 513 | 
         
            +
                    _, seq_len, _ = prompt_embeds.shape
         
     | 
| 514 | 
         
            +
                    # duplicate text embeddings for each generation per prompt, using mps friendly method
         
     | 
| 515 | 
         
            +
                    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
         
     | 
| 516 | 
         
            +
                    prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
         
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
                    pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
         
     | 
| 519 | 
         
            +
                    pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
         
     | 
| 520 | 
         
            +
             
     | 
| 521 | 
         
            +
                    return prompt_embeds, pooled_prompt_embeds
         
     | 
| 522 | 
         
            +
             
     | 
| 523 | 
         
            +
                def encode_prompt(
         
     | 
| 524 | 
         
            +
                    self,
         
     | 
| 525 | 
         
            +
                    prompt: Union[str, List[str]],
         
     | 
| 526 | 
         
            +
                    prompt_2: Union[str, List[str]],
         
     | 
| 527 | 
         
            +
                    prompt_3: Union[str, List[str]],
         
     | 
| 528 | 
         
            +
                    device: Optional[torch.device] = None,
         
     | 
| 529 | 
         
            +
                    num_images_per_prompt: int = 1,
         
     | 
| 530 | 
         
            +
                    do_classifier_free_guidance: bool = True,
         
     | 
| 531 | 
         
            +
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         
     | 
| 532 | 
         
            +
                    negative_prompt_2: Optional[Union[str, List[str]]] = None,
         
     | 
| 533 | 
         
            +
                    negative_prompt_3: Optional[Union[str, List[str]]] = None,
         
     | 
| 534 | 
         
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 535 | 
         
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 536 | 
         
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 537 | 
         
            +
                    negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 538 | 
         
            +
                    clip_skip: Optional[int] = None,
         
     | 
| 539 | 
         
            +
                    max_sequence_length: int = 256,
         
     | 
| 540 | 
         
            +
                    lora_scale: Optional[float] = None,
         
     | 
| 541 | 
         
            +
                ):
         
     | 
| 542 | 
         
            +
                    r"""
         
     | 
| 543 | 
         
            +
             
     | 
| 544 | 
         
            +
                    Args:
         
     | 
| 545 | 
         
            +
                        prompt (`str` or `List[str]`, *optional*):
         
     | 
| 546 | 
         
            +
                            prompt to be encoded
         
     | 
| 547 | 
         
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         
     | 
| 548 | 
         
            +
                            The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         
     | 
| 549 | 
         
            +
                            used in all text-encoders
         
     | 
| 550 | 
         
            +
                        prompt_3 (`str` or `List[str]`, *optional*):
         
     | 
| 551 | 
         
            +
                            The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
         
     | 
| 552 | 
         
            +
                            used in all text-encoders
         
     | 
| 553 | 
         
            +
                        device: (`torch.device`):
         
     | 
| 554 | 
         
            +
                            torch device
         
     | 
| 555 | 
         
            +
                        num_images_per_prompt (`int`):
         
     | 
| 556 | 
         
            +
                            number of images that should be generated per prompt
         
     | 
| 557 | 
         
            +
                        do_classifier_free_guidance (`bool`):
         
     | 
| 558 | 
         
            +
                            whether to use classifier free guidance or not
         
     | 
| 559 | 
         
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         
     | 
| 560 | 
         
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         
     | 
| 561 | 
         
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         
     | 
| 562 | 
         
            +
                            less than `1`).
         
     | 
| 563 | 
         
            +
                        negative_prompt_2 (`str` or `List[str]`, *optional*):
         
     | 
| 564 | 
         
            +
                            The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
         
     | 
| 565 | 
         
            +
                            `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
         
     | 
| 566 | 
         
            +
                        negative_prompt_2 (`str` or `List[str]`, *optional*):
         
     | 
| 567 | 
         
            +
                            The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
         
     | 
| 568 | 
         
            +
                            `text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
         
     | 
| 569 | 
         
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 570 | 
         
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         
     | 
| 571 | 
         
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         
     | 
| 572 | 
         
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 573 | 
         
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 574 | 
         
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         
     | 
| 575 | 
         
            +
                            argument.
         
     | 
| 576 | 
         
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 577 | 
         
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         
     | 
| 578 | 
         
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         
     | 
| 579 | 
         
            +
                        negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 580 | 
         
            +
                            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 581 | 
         
            +
                            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
         
     | 
| 582 | 
         
            +
                            input argument.
         
     | 
| 583 | 
         
            +
                        clip_skip (`int`, *optional*):
         
     | 
| 584 | 
         
            +
                            Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
         
     | 
| 585 | 
         
            +
                            the output of the pre-final layer will be used for computing the prompt embeddings.
         
     | 
| 586 | 
         
            +
                        lora_scale (`float`, *optional*):
         
     | 
| 587 | 
         
            +
                            A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
         
     | 
| 588 | 
         
            +
                    """
         
     | 
| 589 | 
         
            +
                    device = device or self._execution_device
         
     | 
| 590 | 
         
            +
             
     | 
| 591 | 
         
            +
                    # set lora scale so that monkey patched LoRA
         
     | 
| 592 | 
         
            +
                    # function of text encoder can correctly access it
         
     | 
| 593 | 
         
            +
                    if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
         
     | 
| 594 | 
         
            +
                        self._lora_scale = lora_scale
         
     | 
| 595 | 
         
            +
             
     | 
| 596 | 
         
            +
                        # dynamically adjust the LoRA scale
         
     | 
| 597 | 
         
            +
                        if self.text_encoder is not None and USE_PEFT_BACKEND:
         
     | 
| 598 | 
         
            +
                            scale_lora_layers(self.text_encoder, lora_scale)
         
     | 
| 599 | 
         
            +
                        if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
         
     | 
| 600 | 
         
            +
                            scale_lora_layers(self.text_encoder_2, lora_scale)
         
     | 
| 601 | 
         
            +
             
     | 
| 602 | 
         
            +
                    prompt = [prompt] if isinstance(prompt, str) else prompt
         
     | 
| 603 | 
         
            +
                    if prompt is not None:
         
     | 
| 604 | 
         
            +
                        batch_size = len(prompt)
         
     | 
| 605 | 
         
            +
                    else:
         
     | 
| 606 | 
         
            +
                        batch_size = prompt_embeds.shape[0]
         
     | 
| 607 | 
         
            +
             
     | 
| 608 | 
         
            +
                    if prompt_embeds is None:
         
     | 
| 609 | 
         
            +
                        prompt_2 = prompt_2 or prompt
         
     | 
| 610 | 
         
            +
                        prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
         
     | 
| 611 | 
         
            +
             
     | 
| 612 | 
         
            +
                        prompt_3 = prompt_3 or prompt
         
     | 
| 613 | 
         
            +
                        prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
         
     | 
| 614 | 
         
            +
             
     | 
| 615 | 
         
            +
                        prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
         
     | 
| 616 | 
         
            +
                            prompt=prompt,
         
     | 
| 617 | 
         
            +
                            device=device,
         
     | 
| 618 | 
         
            +
                            num_images_per_prompt=num_images_per_prompt,
         
     | 
| 619 | 
         
            +
                            clip_skip=clip_skip,
         
     | 
| 620 | 
         
            +
                            clip_model_index=0,
         
     | 
| 621 | 
         
            +
                        )
         
     | 
| 622 | 
         
            +
                        prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
         
     | 
| 623 | 
         
            +
                            prompt=prompt_2,
         
     | 
| 624 | 
         
            +
                            device=device,
         
     | 
| 625 | 
         
            +
                            num_images_per_prompt=num_images_per_prompt,
         
     | 
| 626 | 
         
            +
                            clip_skip=clip_skip,
         
     | 
| 627 | 
         
            +
                            clip_model_index=1,
         
     | 
| 628 | 
         
            +
                        )
         
     | 
| 629 | 
         
            +
                        clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
         
     | 
| 630 | 
         
            +
             
     | 
| 631 | 
         
            +
                        t5_prompt_embed = self._get_t5_prompt_embeds(
         
     | 
| 632 | 
         
            +
                            prompt=prompt_3,
         
     | 
| 633 | 
         
            +
                            num_images_per_prompt=num_images_per_prompt,
         
     | 
| 634 | 
         
            +
                            max_sequence_length=max_sequence_length,
         
     | 
| 635 | 
         
            +
                            device=device,
         
     | 
| 636 | 
         
            +
                        )
         
     | 
| 637 | 
         
            +
             
     | 
| 638 | 
         
            +
                        clip_prompt_embeds = torch.nn.functional.pad(
         
     | 
| 639 | 
         
            +
                            clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
         
     | 
| 640 | 
         
            +
                        )
         
     | 
| 641 | 
         
            +
             
     | 
| 642 | 
         
            +
                        prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
         
     | 
| 643 | 
         
            +
                        pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
         
     | 
| 644 | 
         
            +
             
     | 
| 645 | 
         
            +
                    if do_classifier_free_guidance and negative_prompt_embeds is None:
         
     | 
| 646 | 
         
            +
                        negative_prompt = negative_prompt or ""
         
     | 
| 647 | 
         
            +
                        negative_prompt_2 = negative_prompt_2 or negative_prompt
         
     | 
| 648 | 
         
            +
                        negative_prompt_3 = negative_prompt_3 or negative_prompt
         
     | 
| 649 | 
         
            +
             
     | 
| 650 | 
         
            +
                        # normalize str to list
         
     | 
| 651 | 
         
            +
                        negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
         
     | 
| 652 | 
         
            +
                        negative_prompt_2 = (
         
     | 
| 653 | 
         
            +
                            batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
         
     | 
| 654 | 
         
            +
                        )
         
     | 
| 655 | 
         
            +
                        negative_prompt_3 = (
         
     | 
| 656 | 
         
            +
                            batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
         
     | 
| 657 | 
         
            +
                        )
         
     | 
| 658 | 
         
            +
             
     | 
| 659 | 
         
            +
                        if prompt is not None and type(prompt) is not type(negative_prompt):
         
     | 
| 660 | 
         
            +
                            raise TypeError(
         
     | 
| 661 | 
         
            +
                                f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
         
     | 
| 662 | 
         
            +
                                f" {type(prompt)}."
         
     | 
| 663 | 
         
            +
                            )
         
     | 
| 664 | 
         
            +
                        elif batch_size != len(negative_prompt):
         
     | 
| 665 | 
         
            +
                            raise ValueError(
         
     | 
| 666 | 
         
            +
                                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
         
     | 
| 667 | 
         
            +
                                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
         
     | 
| 668 | 
         
            +
                                " the batch size of `prompt`."
         
     | 
| 669 | 
         
            +
                            )
         
     | 
| 670 | 
         
            +
             
     | 
| 671 | 
         
            +
                        negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
         
     | 
| 672 | 
         
            +
                            negative_prompt,
         
     | 
| 673 | 
         
            +
                            device=device,
         
     | 
| 674 | 
         
            +
                            num_images_per_prompt=num_images_per_prompt,
         
     | 
| 675 | 
         
            +
                            clip_skip=None,
         
     | 
| 676 | 
         
            +
                            clip_model_index=0,
         
     | 
| 677 | 
         
            +
                        )
         
     | 
| 678 | 
         
            +
                        negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
         
     | 
| 679 | 
         
            +
                            negative_prompt_2,
         
     | 
| 680 | 
         
            +
                            device=device,
         
     | 
| 681 | 
         
            +
                            num_images_per_prompt=num_images_per_prompt,
         
     | 
| 682 | 
         
            +
                            clip_skip=None,
         
     | 
| 683 | 
         
            +
                            clip_model_index=1,
         
     | 
| 684 | 
         
            +
                        )
         
     | 
| 685 | 
         
            +
                        negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
         
     | 
| 686 | 
         
            +
             
     | 
| 687 | 
         
            +
                        t5_negative_prompt_embed = self._get_t5_prompt_embeds(
         
     | 
| 688 | 
         
            +
                            prompt=negative_prompt_3,
         
     | 
| 689 | 
         
            +
                            num_images_per_prompt=num_images_per_prompt,
         
     | 
| 690 | 
         
            +
                            max_sequence_length=max_sequence_length,
         
     | 
| 691 | 
         
            +
                            device=device,
         
     | 
| 692 | 
         
            +
                        )
         
     | 
| 693 | 
         
            +
             
     | 
| 694 | 
         
            +
                        negative_clip_prompt_embeds = torch.nn.functional.pad(
         
     | 
| 695 | 
         
            +
                            negative_clip_prompt_embeds,
         
     | 
| 696 | 
         
            +
                            (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
         
     | 
| 697 | 
         
            +
                        )
         
     | 
| 698 | 
         
            +
             
     | 
| 699 | 
         
            +
                        negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
         
     | 
| 700 | 
         
            +
                        negative_pooled_prompt_embeds = torch.cat(
         
     | 
| 701 | 
         
            +
                            [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
         
     | 
| 702 | 
         
            +
                        )
         
     | 
| 703 | 
         
            +
             
     | 
| 704 | 
         
            +
                    if self.text_encoder is not None:
         
     | 
| 705 | 
         
            +
                        if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
         
     | 
| 706 | 
         
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         
     | 
| 707 | 
         
            +
                            unscale_lora_layers(self.text_encoder, lora_scale)
         
     | 
| 708 | 
         
            +
             
     | 
| 709 | 
         
            +
                    if self.text_encoder_2 is not None:
         
     | 
| 710 | 
         
            +
                        if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
         
     | 
| 711 | 
         
            +
                            # Retrieve the original scale by scaling back the LoRA layers
         
     | 
| 712 | 
         
            +
                            unscale_lora_layers(self.text_encoder_2, lora_scale)
         
     | 
| 713 | 
         
            +
             
     | 
| 714 | 
         
            +
                    return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
         
     | 
| 715 | 
         
            +
             
     | 
| 716 | 
         
            +
                def check_inputs(
         
     | 
| 717 | 
         
            +
                    self,
         
     | 
| 718 | 
         
            +
                    prompt,
         
     | 
| 719 | 
         
            +
                    prompt_2,
         
     | 
| 720 | 
         
            +
                    prompt_3,
         
     | 
| 721 | 
         
            +
                    height,
         
     | 
| 722 | 
         
            +
                    width,
         
     | 
| 723 | 
         
            +
                    negative_prompt=None,
         
     | 
| 724 | 
         
            +
                    negative_prompt_2=None,
         
     | 
| 725 | 
         
            +
                    negative_prompt_3=None,
         
     | 
| 726 | 
         
            +
                    prompt_embeds=None,
         
     | 
| 727 | 
         
            +
                    negative_prompt_embeds=None,
         
     | 
| 728 | 
         
            +
                    pooled_prompt_embeds=None,
         
     | 
| 729 | 
         
            +
                    negative_pooled_prompt_embeds=None,
         
     | 
| 730 | 
         
            +
                    callback_on_step_end_tensor_inputs=None,
         
     | 
| 731 | 
         
            +
                    max_sequence_length=None,
         
     | 
| 732 | 
         
            +
                ):
         
     | 
| 733 | 
         
            +
                    if height % 8 != 0 or width % 8 != 0:
         
     | 
| 734 | 
         
            +
                        raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
         
     | 
| 735 | 
         
            +
             
     | 
| 736 | 
         
            +
                    if callback_on_step_end_tensor_inputs is not None and not all(
         
     | 
| 737 | 
         
            +
                        k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
         
     | 
| 738 | 
         
            +
                    ):
         
     | 
| 739 | 
         
            +
                        raise ValueError(
         
     | 
| 740 | 
         
            +
                            f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
         
     | 
| 741 | 
         
            +
                        )
         
     | 
| 742 | 
         
            +
             
     | 
| 743 | 
         
            +
                    if prompt is not None and prompt_embeds is not None:
         
     | 
| 744 | 
         
            +
                        raise ValueError(
         
     | 
| 745 | 
         
            +
                            f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         
     | 
| 746 | 
         
            +
                            " only forward one of the two."
         
     | 
| 747 | 
         
            +
                        )
         
     | 
| 748 | 
         
            +
                    elif prompt_2 is not None and prompt_embeds is not None:
         
     | 
| 749 | 
         
            +
                        raise ValueError(
         
     | 
| 750 | 
         
            +
                            f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         
     | 
| 751 | 
         
            +
                            " only forward one of the two."
         
     | 
| 752 | 
         
            +
                        )
         
     | 
| 753 | 
         
            +
                    elif prompt_3 is not None and prompt_embeds is not None:
         
     | 
| 754 | 
         
            +
                        raise ValueError(
         
     | 
| 755 | 
         
            +
                            f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
         
     | 
| 756 | 
         
            +
                            " only forward one of the two."
         
     | 
| 757 | 
         
            +
                        )
         
     | 
| 758 | 
         
            +
                    elif prompt is None and prompt_embeds is None:
         
     | 
| 759 | 
         
            +
                        raise ValueError(
         
     | 
| 760 | 
         
            +
                            "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
         
     | 
| 761 | 
         
            +
                        )
         
     | 
| 762 | 
         
            +
                    elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
         
     | 
| 763 | 
         
            +
                        raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
         
     | 
| 764 | 
         
            +
                    elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
         
     | 
| 765 | 
         
            +
                        raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
         
     | 
| 766 | 
         
            +
                    elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
         
     | 
| 767 | 
         
            +
                        raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
         
     | 
| 768 | 
         
            +
             
     | 
| 769 | 
         
            +
                    if negative_prompt is not None and negative_prompt_embeds is not None:
         
     | 
| 770 | 
         
            +
                        raise ValueError(
         
     | 
| 771 | 
         
            +
                            f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
         
     | 
| 772 | 
         
            +
                            f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
         
     | 
| 773 | 
         
            +
                        )
         
     | 
| 774 | 
         
            +
                    elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
         
     | 
| 775 | 
         
            +
                        raise ValueError(
         
     | 
| 776 | 
         
            +
                            f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
         
     | 
| 777 | 
         
            +
                            f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
         
     | 
| 778 | 
         
            +
                        )
         
     | 
| 779 | 
         
            +
                    elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
         
     | 
| 780 | 
         
            +
                        raise ValueError(
         
     | 
| 781 | 
         
            +
                            f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
         
     | 
| 782 | 
         
            +
                            f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
         
     | 
| 783 | 
         
            +
                        )
         
     | 
| 784 | 
         
            +
             
     | 
| 785 | 
         
            +
                    if prompt_embeds is not None and negative_prompt_embeds is not None:
         
     | 
| 786 | 
         
            +
                        if prompt_embeds.shape != negative_prompt_embeds.shape:
         
     | 
| 787 | 
         
            +
                            raise ValueError(
         
     | 
| 788 | 
         
            +
                                "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
         
     | 
| 789 | 
         
            +
                                f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
         
     | 
| 790 | 
         
            +
                                f" {negative_prompt_embeds.shape}."
         
     | 
| 791 | 
         
            +
                            )
         
     | 
| 792 | 
         
            +
             
     | 
| 793 | 
         
            +
                    if prompt_embeds is not None and pooled_prompt_embeds is None:
         
     | 
| 794 | 
         
            +
                        raise ValueError(
         
     | 
| 795 | 
         
            +
                            "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
         
     | 
| 796 | 
         
            +
                        )
         
     | 
| 797 | 
         
            +
             
     | 
| 798 | 
         
            +
                    if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
         
     | 
| 799 | 
         
            +
                        raise ValueError(
         
     | 
| 800 | 
         
            +
                            "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
         
     | 
| 801 | 
         
            +
                        )
         
     | 
| 802 | 
         
            +
             
     | 
| 803 | 
         
            +
                    if max_sequence_length is not None and max_sequence_length > 512:
         
     | 
| 804 | 
         
            +
                        raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
         
     | 
| 805 | 
         
            +
             
     | 
| 806 | 
         
            +
                def prepare_latents(
         
     | 
| 807 | 
         
            +
                    self,
         
     | 
| 808 | 
         
            +
                    batch_size,
         
     | 
| 809 | 
         
            +
                    num_channels_latents,
         
     | 
| 810 | 
         
            +
                    height,
         
     | 
| 811 | 
         
            +
                    width,
         
     | 
| 812 | 
         
            +
                    dtype,
         
     | 
| 813 | 
         
            +
                    device,
         
     | 
| 814 | 
         
            +
                    generator,
         
     | 
| 815 | 
         
            +
                    latents=None,
         
     | 
| 816 | 
         
            +
                ):
         
     | 
| 817 | 
         
            +
                    if latents is not None:
         
     | 
| 818 | 
         
            +
                        return latents.to(device=device, dtype=dtype)
         
     | 
| 819 | 
         
            +
             
     | 
| 820 | 
         
            +
                    shape = (
         
     | 
| 821 | 
         
            +
                        batch_size,
         
     | 
| 822 | 
         
            +
                        num_channels_latents,
         
     | 
| 823 | 
         
            +
                        int(height) // self.vae_scale_factor,
         
     | 
| 824 | 
         
            +
                        int(width) // self.vae_scale_factor,
         
     | 
| 825 | 
         
            +
                    )
         
     | 
| 826 | 
         
            +
             
     | 
| 827 | 
         
            +
                    if isinstance(generator, list) and len(generator) != batch_size:
         
     | 
| 828 | 
         
            +
                        raise ValueError(
         
     | 
| 829 | 
         
            +
                            f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         
     | 
| 830 | 
         
            +
                            f" size of {batch_size}. Make sure the batch size matches the length of the generators."
         
     | 
| 831 | 
         
            +
                        )
         
     | 
| 832 | 
         
            +
             
     | 
| 833 | 
         
            +
                    latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
         
     | 
| 834 | 
         
            +
             
     | 
| 835 | 
         
            +
                    return latents
         
     | 
| 836 | 
         
            +
             
     | 
| 837 | 
         
            +
                @property
         
     | 
| 838 | 
         
            +
                def guidance_scale(self):
         
     | 
| 839 | 
         
            +
                    return self._guidance_scale
         
     | 
| 840 | 
         
            +
             
     | 
| 841 | 
         
            +
                @property
         
     | 
| 842 | 
         
            +
                def clip_skip(self):
         
     | 
| 843 | 
         
            +
                    return self._clip_skip
         
     | 
| 844 | 
         
            +
             
     | 
| 845 | 
         
            +
                # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         
     | 
| 846 | 
         
            +
                # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         
     | 
| 847 | 
         
            +
                # corresponds to doing no classifier free guidance.
         
     | 
| 848 | 
         
            +
                @property
         
     | 
| 849 | 
         
            +
                def do_classifier_free_guidance(self):
         
     | 
| 850 | 
         
            +
                    return self._guidance_scale > 1
         
     | 
| 851 | 
         
            +
             
     | 
| 852 | 
         
            +
                @property
         
     | 
| 853 | 
         
            +
                def joint_attention_kwargs(self):
         
     | 
| 854 | 
         
            +
                    return self._joint_attention_kwargs
         
     | 
| 855 | 
         
            +
             
     | 
| 856 | 
         
            +
                @property
         
     | 
| 857 | 
         
            +
                def num_timesteps(self):
         
     | 
| 858 | 
         
            +
                    return self._num_timesteps
         
     | 
| 859 | 
         
            +
             
     | 
| 860 | 
         
            +
                @property
         
     | 
| 861 | 
         
            +
                def interrupt(self):
         
     | 
| 862 | 
         
            +
                    return self._interrupt
         
     | 
| 863 | 
         
            +
             
     | 
| 864 | 
         
            +
             
     | 
| 865 | 
         
            +
                @torch.inference_mode()
         
     | 
| 866 | 
         
            +
                def init_ipadapter(self, ip_adapter_path, image_encoder_path, nb_token, output_dim=2432):
         
     | 
| 867 | 
         
            +
                    from transformers import SiglipVisionModel, SiglipImageProcessor
         
     | 
| 868 | 
         
            +
                    state_dict = torch.load(ip_adapter_path, map_location="cpu")
         
     | 
| 869 | 
         
            +
             
     | 
| 870 | 
         
            +
                    device, dtype = self.transformer.device, self.transformer.dtype
         
     | 
| 871 | 
         
            +
                    image_encoder = SiglipVisionModel.from_pretrained(image_encoder_path)
         
     | 
| 872 | 
         
            +
                    image_processor = SiglipImageProcessor.from_pretrained(image_encoder_path)
         
     | 
| 873 | 
         
            +
                    image_encoder.eval()
         
     | 
| 874 | 
         
            +
                    image_encoder.to(device, dtype=dtype)
         
     | 
| 875 | 
         
            +
                    self.image_encoder = image_encoder
         
     | 
| 876 | 
         
            +
                    self.clip_image_processor = image_processor
         
     | 
| 877 | 
         
            +
             
     | 
| 878 | 
         
            +
                    sample_class = TimeResampler
         
     | 
| 879 | 
         
            +
                    image_proj_model = sample_class(
         
     | 
| 880 | 
         
            +
                        dim=1280,
         
     | 
| 881 | 
         
            +
                        depth=4,
         
     | 
| 882 | 
         
            +
                        dim_head=64,
         
     | 
| 883 | 
         
            +
                        heads=20,
         
     | 
| 884 | 
         
            +
                        num_queries=nb_token,
         
     | 
| 885 | 
         
            +
                        embedding_dim=1152,
         
     | 
| 886 | 
         
            +
                        output_dim=output_dim,
         
     | 
| 887 | 
         
            +
                        ff_mult=4,
         
     | 
| 888 | 
         
            +
                        timestep_in_dim=320,
         
     | 
| 889 | 
         
            +
                        timestep_flip_sin_to_cos=True,
         
     | 
| 890 | 
         
            +
                        timestep_freq_shift=0,
         
     | 
| 891 | 
         
            +
                    )
         
     | 
| 892 | 
         
            +
                    image_proj_model.eval()
         
     | 
| 893 | 
         
            +
                    image_proj_model.to(device, dtype=dtype)
         
     | 
| 894 | 
         
            +
                    key_name = image_proj_model.load_state_dict(state_dict["image_proj"], strict=False)
         
     | 
| 895 | 
         
            +
                    print(f"=> loading image_proj_model: {key_name}")
         
     | 
| 896 | 
         
            +
             
     | 
| 897 | 
         
            +
                    self.image_proj_model = image_proj_model
         
     | 
| 898 | 
         
            +
             
     | 
| 899 | 
         
            +
             
     | 
| 900 | 
         
            +
                    attn_procs = {}
         
     | 
| 901 | 
         
            +
                    transformer = self.transformer
         
     | 
| 902 | 
         
            +
                    for idx_name, name in enumerate(transformer.attn_processors.keys()):
         
     | 
| 903 | 
         
            +
                        hidden_size = transformer.config.attention_head_dim * transformer.config.num_attention_heads
         
     | 
| 904 | 
         
            +
                        ip_hidden_states_dim = transformer.config.attention_head_dim * transformer.config.num_attention_heads
         
     | 
| 905 | 
         
            +
                        ip_encoder_hidden_states_dim = transformer.config.caption_projection_dim
         
     | 
| 906 | 
         
            +
                        
         
     | 
| 907 | 
         
            +
                        attn_procs[name] = JointIPAttnProcessor(
         
     | 
| 908 | 
         
            +
                            hidden_size=hidden_size,
         
     | 
| 909 | 
         
            +
                            cross_attention_dim=transformer.config.caption_projection_dim,
         
     | 
| 910 | 
         
            +
                            ip_hidden_states_dim=ip_hidden_states_dim,
         
     | 
| 911 | 
         
            +
                            ip_encoder_hidden_states_dim=ip_encoder_hidden_states_dim,
         
     | 
| 912 | 
         
            +
                            head_dim=transformer.config.attention_head_dim,
         
     | 
| 913 | 
         
            +
                            timesteps_emb_dim=1280,
         
     | 
| 914 | 
         
            +
                        ).to(device, dtype=dtype)
         
     | 
| 915 | 
         
            +
             
     | 
| 916 | 
         
            +
                    self.transformer.set_attn_processor(attn_procs)
         
     | 
| 917 | 
         
            +
                    tmp_ip_layers = torch.nn.ModuleList(self.transformer.attn_processors.values())
         
     | 
| 918 | 
         
            +
             
     | 
| 919 | 
         
            +
                    key_name = tmp_ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False)
         
     | 
| 920 | 
         
            +
                    print(f"=> loading ip_adapter: {key_name}")
         
     | 
| 921 | 
         
            +
             
     | 
| 922 | 
         
            +
             
     | 
| 923 | 
         
            +
                @torch.inference_mode()
         
     | 
| 924 | 
         
            +
                def encode_clip_image_emb(self, clip_image, device, dtype):
         
     | 
| 925 | 
         
            +
             
     | 
| 926 | 
         
            +
                    # clip
         
     | 
| 927 | 
         
            +
                    clip_image_tensor = self.clip_image_processor(images=clip_image, return_tensors="pt").pixel_values
         
     | 
| 928 | 
         
            +
                    clip_image_tensor = clip_image_tensor.to(device, dtype=dtype)
         
     | 
| 929 | 
         
            +
                    clip_image_embeds = self.image_encoder(clip_image_tensor, output_hidden_states=True).hidden_states[-2]
         
     | 
| 930 | 
         
            +
                    clip_image_embeds = torch.cat([torch.zeros_like(clip_image_embeds), clip_image_embeds], dim=0)
         
     | 
| 931 | 
         
            +
             
     | 
| 932 | 
         
            +
                    return clip_image_embeds
         
     | 
| 933 | 
         
            +
             
     | 
| 934 | 
         
            +
             
     | 
| 935 | 
         
            +
             
     | 
| 936 | 
         
            +
                @torch.no_grad()
         
     | 
| 937 | 
         
            +
                @replace_example_docstring(EXAMPLE_DOC_STRING)
         
     | 
| 938 | 
         
            +
                def __call__(
         
     | 
| 939 | 
         
            +
                    self,
         
     | 
| 940 | 
         
            +
                    prompt: Union[str, List[str]] = None,
         
     | 
| 941 | 
         
            +
                    prompt_2: Optional[Union[str, List[str]]] = None,
         
     | 
| 942 | 
         
            +
                    prompt_3: Optional[Union[str, List[str]]] = None,
         
     | 
| 943 | 
         
            +
                    height: Optional[int] = None,
         
     | 
| 944 | 
         
            +
                    width: Optional[int] = None,
         
     | 
| 945 | 
         
            +
                    num_inference_steps: int = 28,
         
     | 
| 946 | 
         
            +
                    timesteps: List[int] = None,
         
     | 
| 947 | 
         
            +
                    guidance_scale: float = 7.0,
         
     | 
| 948 | 
         
            +
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         
     | 
| 949 | 
         
            +
                    negative_prompt_2: Optional[Union[str, List[str]]] = None,
         
     | 
| 950 | 
         
            +
                    negative_prompt_3: Optional[Union[str, List[str]]] = None,
         
     | 
| 951 | 
         
            +
                    num_images_per_prompt: Optional[int] = 1,
         
     | 
| 952 | 
         
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         
     | 
| 953 | 
         
            +
                    latents: Optional[torch.FloatTensor] = None,
         
     | 
| 954 | 
         
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 955 | 
         
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 956 | 
         
            +
                    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 957 | 
         
            +
                    negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
         
     | 
| 958 | 
         
            +
                    output_type: Optional[str] = "pil",
         
     | 
| 959 | 
         
            +
                    return_dict: bool = True,
         
     | 
| 960 | 
         
            +
                    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 961 | 
         
            +
                    clip_skip: Optional[int] = None,
         
     | 
| 962 | 
         
            +
                    callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
         
     | 
| 963 | 
         
            +
                    callback_on_step_end_tensor_inputs: List[str] = ["latents"],
         
     | 
| 964 | 
         
            +
                    max_sequence_length: int = 256,
         
     | 
| 965 | 
         
            +
             
     | 
| 966 | 
         
            +
                    # ipa
         
     | 
| 967 | 
         
            +
                    clip_image=None,
         
     | 
| 968 | 
         
            +
                    ipadapter_scale=1.0,
         
     | 
| 969 | 
         
            +
                ):
         
     | 
| 970 | 
         
            +
                    r"""
         
     | 
| 971 | 
         
            +
                    Function invoked when calling the pipeline for generation.
         
     | 
| 972 | 
         
            +
             
     | 
| 973 | 
         
            +
                    Args:
         
     | 
| 974 | 
         
            +
                        prompt (`str` or `List[str]`, *optional*):
         
     | 
| 975 | 
         
            +
                            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
         
     | 
| 976 | 
         
            +
                            instead.
         
     | 
| 977 | 
         
            +
                        prompt_2 (`str` or `List[str]`, *optional*):
         
     | 
| 978 | 
         
            +
                            The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
         
     | 
| 979 | 
         
            +
                            will be used instead
         
     | 
| 980 | 
         
            +
                        prompt_3 (`str` or `List[str]`, *optional*):
         
     | 
| 981 | 
         
            +
                            The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
         
     | 
| 982 | 
         
            +
                            will be used instead
         
     | 
| 983 | 
         
            +
                        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         
     | 
| 984 | 
         
            +
                            The height in pixels of the generated image. This is set to 1024 by default for the best results.
         
     | 
| 985 | 
         
            +
                        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         
     | 
| 986 | 
         
            +
                            The width in pixels of the generated image. This is set to 1024 by default for the best results.
         
     | 
| 987 | 
         
            +
                        num_inference_steps (`int`, *optional*, defaults to 50):
         
     | 
| 988 | 
         
            +
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         
     | 
| 989 | 
         
            +
                            expense of slower inference.
         
     | 
| 990 | 
         
            +
                        timesteps (`List[int]`, *optional*):
         
     | 
| 991 | 
         
            +
                            Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
         
     | 
| 992 | 
         
            +
                            in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
         
     | 
| 993 | 
         
            +
                            passed will be used. Must be in descending order.
         
     | 
| 994 | 
         
            +
                        guidance_scale (`float`, *optional*, defaults to 7.0):
         
     | 
| 995 | 
         
            +
                            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
         
     | 
| 996 | 
         
            +
                            `guidance_scale` is defined as `w` of equation 2. of [Imagen
         
     | 
| 997 | 
         
            +
                            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
         
     | 
| 998 | 
         
            +
                            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
         
     | 
| 999 | 
         
            +
                            usually at the expense of lower image quality.
         
     | 
| 1000 | 
         
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         
     | 
| 1001 | 
         
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         
     | 
| 1002 | 
         
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         
     | 
| 1003 | 
         
            +
                            less than `1`).
         
     | 
| 1004 | 
         
            +
                        negative_prompt_2 (`str` or `List[str]`, *optional*):
         
     | 
| 1005 | 
         
            +
                            The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
         
     | 
| 1006 | 
         
            +
                            `text_encoder_2`. If not defined, `negative_prompt` is used instead
         
     | 
| 1007 | 
         
            +
                        negative_prompt_3 (`str` or `List[str]`, *optional*):
         
     | 
| 1008 | 
         
            +
                            The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
         
     | 
| 1009 | 
         
            +
                            `text_encoder_3`. If not defined, `negative_prompt` is used instead
         
     | 
| 1010 | 
         
            +
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         
     | 
| 1011 | 
         
            +
                            The number of images to generate per prompt.
         
     | 
| 1012 | 
         
            +
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         
     | 
| 1013 | 
         
            +
                            One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
         
     | 
| 1014 | 
         
            +
                            to make generation deterministic.
         
     | 
| 1015 | 
         
            +
                        latents (`torch.FloatTensor`, *optional*):
         
     | 
| 1016 | 
         
            +
                            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
         
     | 
| 1017 | 
         
            +
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         
     | 
| 1018 | 
         
            +
                            tensor will ge generated by sampling using the supplied random `generator`.
         
     | 
| 1019 | 
         
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 1020 | 
         
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         
     | 
| 1021 | 
         
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         
     | 
| 1022 | 
         
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 1023 | 
         
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 1024 | 
         
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         
     | 
| 1025 | 
         
            +
                            argument.
         
     | 
| 1026 | 
         
            +
                        pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 1027 | 
         
            +
                            Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
         
     | 
| 1028 | 
         
            +
                            If not provided, pooled text embeddings will be generated from `prompt` input argument.
         
     | 
| 1029 | 
         
            +
                        negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
         
     | 
| 1030 | 
         
            +
                            Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         
     | 
| 1031 | 
         
            +
                            weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
         
     | 
| 1032 | 
         
            +
                            input argument.
         
     | 
| 1033 | 
         
            +
                        output_type (`str`, *optional*, defaults to `"pil"`):
         
     | 
| 1034 | 
         
            +
                            The output format of the generate image. Choose between
         
     | 
| 1035 | 
         
            +
                            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
         
     | 
| 1036 | 
         
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         
     | 
| 1037 | 
         
            +
                            Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
         
     | 
| 1038 | 
         
            +
                            of a plain tuple.
         
     | 
| 1039 | 
         
            +
                        joint_attention_kwargs (`dict`, *optional*):
         
     | 
| 1040 | 
         
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         
     | 
| 1041 | 
         
            +
                            `self.processor` in
         
     | 
| 1042 | 
         
            +
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         
     | 
| 1043 | 
         
            +
                        callback_on_step_end (`Callable`, *optional*):
         
     | 
| 1044 | 
         
            +
                            A function that calls at the end of each denoising steps during the inference. The function is called
         
     | 
| 1045 | 
         
            +
                            with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
         
     | 
| 1046 | 
         
            +
                            callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
         
     | 
| 1047 | 
         
            +
                            `callback_on_step_end_tensor_inputs`.
         
     | 
| 1048 | 
         
            +
                        callback_on_step_end_tensor_inputs (`List`, *optional*):
         
     | 
| 1049 | 
         
            +
                            The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
         
     | 
| 1050 | 
         
            +
                            will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
         
     | 
| 1051 | 
         
            +
                            `._callback_tensor_inputs` attribute of your pipeline class.
         
     | 
| 1052 | 
         
            +
                        max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
         
     | 
| 1053 | 
         
            +
             
     | 
| 1054 | 
         
            +
                    Examples:
         
     | 
| 1055 | 
         
            +
             
     | 
| 1056 | 
         
            +
                    Returns:
         
     | 
| 1057 | 
         
            +
                        [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`:
         
     | 
| 1058 | 
         
            +
                        [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a
         
     | 
| 1059 | 
         
            +
                        `tuple`. When returning a tuple, the first element is a list with the generated images.
         
     | 
| 1060 | 
         
            +
                    """
         
     | 
| 1061 | 
         
            +
             
     | 
| 1062 | 
         
            +
                    height = height or self.default_sample_size * self.vae_scale_factor
         
     | 
| 1063 | 
         
            +
                    width = width or self.default_sample_size * self.vae_scale_factor
         
     | 
| 1064 | 
         
            +
             
     | 
| 1065 | 
         
            +
                    # 1. Check inputs. Raise error if not correct
         
     | 
| 1066 | 
         
            +
                    self.check_inputs(
         
     | 
| 1067 | 
         
            +
                        prompt,
         
     | 
| 1068 | 
         
            +
                        prompt_2,
         
     | 
| 1069 | 
         
            +
                        prompt_3,
         
     | 
| 1070 | 
         
            +
                        height,
         
     | 
| 1071 | 
         
            +
                        width,
         
     | 
| 1072 | 
         
            +
                        negative_prompt=negative_prompt,
         
     | 
| 1073 | 
         
            +
                        negative_prompt_2=negative_prompt_2,
         
     | 
| 1074 | 
         
            +
                        negative_prompt_3=negative_prompt_3,
         
     | 
| 1075 | 
         
            +
                        prompt_embeds=prompt_embeds,
         
     | 
| 1076 | 
         
            +
                        negative_prompt_embeds=negative_prompt_embeds,
         
     | 
| 1077 | 
         
            +
                        pooled_prompt_embeds=pooled_prompt_embeds,
         
     | 
| 1078 | 
         
            +
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
         
     | 
| 1079 | 
         
            +
                        callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
         
     | 
| 1080 | 
         
            +
                        max_sequence_length=max_sequence_length,
         
     | 
| 1081 | 
         
            +
                    )
         
     | 
| 1082 | 
         
            +
             
     | 
| 1083 | 
         
            +
                    self._guidance_scale = guidance_scale
         
     | 
| 1084 | 
         
            +
                    self._clip_skip = clip_skip
         
     | 
| 1085 | 
         
            +
                    self._joint_attention_kwargs = joint_attention_kwargs
         
     | 
| 1086 | 
         
            +
                    self._interrupt = False
         
     | 
| 1087 | 
         
            +
             
     | 
| 1088 | 
         
            +
                    # 2. Define call parameters
         
     | 
| 1089 | 
         
            +
                    if prompt is not None and isinstance(prompt, str):
         
     | 
| 1090 | 
         
            +
                        batch_size = 1
         
     | 
| 1091 | 
         
            +
                    elif prompt is not None and isinstance(prompt, list):
         
     | 
| 1092 | 
         
            +
                        batch_size = len(prompt)
         
     | 
| 1093 | 
         
            +
                    else:
         
     | 
| 1094 | 
         
            +
                        batch_size = prompt_embeds.shape[0]
         
     | 
| 1095 | 
         
            +
             
     | 
| 1096 | 
         
            +
                    device = self._execution_device
         
     | 
| 1097 | 
         
            +
                    dtype = self.transformer.dtype
         
     | 
| 1098 | 
         
            +
             
     | 
| 1099 | 
         
            +
                    lora_scale = (
         
     | 
| 1100 | 
         
            +
                        self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
         
     | 
| 1101 | 
         
            +
                    )
         
     | 
| 1102 | 
         
            +
                    (
         
     | 
| 1103 | 
         
            +
                        prompt_embeds,
         
     | 
| 1104 | 
         
            +
                        negative_prompt_embeds,
         
     | 
| 1105 | 
         
            +
                        pooled_prompt_embeds,
         
     | 
| 1106 | 
         
            +
                        negative_pooled_prompt_embeds,
         
     | 
| 1107 | 
         
            +
                    ) = self.encode_prompt(
         
     | 
| 1108 | 
         
            +
                        prompt=prompt,
         
     | 
| 1109 | 
         
            +
                        prompt_2=prompt_2,
         
     | 
| 1110 | 
         
            +
                        prompt_3=prompt_3,
         
     | 
| 1111 | 
         
            +
                        negative_prompt=negative_prompt,
         
     | 
| 1112 | 
         
            +
                        negative_prompt_2=negative_prompt_2,
         
     | 
| 1113 | 
         
            +
                        negative_prompt_3=negative_prompt_3,
         
     | 
| 1114 | 
         
            +
                        do_classifier_free_guidance=self.do_classifier_free_guidance,
         
     | 
| 1115 | 
         
            +
                        prompt_embeds=prompt_embeds,
         
     | 
| 1116 | 
         
            +
                        negative_prompt_embeds=negative_prompt_embeds,
         
     | 
| 1117 | 
         
            +
                        pooled_prompt_embeds=pooled_prompt_embeds,
         
     | 
| 1118 | 
         
            +
                        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
         
     | 
| 1119 | 
         
            +
                        device=device,
         
     | 
| 1120 | 
         
            +
                        clip_skip=self.clip_skip,
         
     | 
| 1121 | 
         
            +
                        num_images_per_prompt=num_images_per_prompt,
         
     | 
| 1122 | 
         
            +
                        max_sequence_length=max_sequence_length,
         
     | 
| 1123 | 
         
            +
                        lora_scale=lora_scale,
         
     | 
| 1124 | 
         
            +
                    )
         
     | 
| 1125 | 
         
            +
             
     | 
| 1126 | 
         
            +
                    if self.do_classifier_free_guidance:
         
     | 
| 1127 | 
         
            +
                        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
         
     | 
| 1128 | 
         
            +
                        pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
         
     | 
| 1129 | 
         
            +
             
     | 
| 1130 | 
         
            +
                    # 3. prepare clip emb
         
     | 
| 1131 | 
         
            +
                    clip_image = clip_image.resize((max(clip_image.size), max(clip_image.size)))
         
     | 
| 1132 | 
         
            +
                    clip_image_embeds = self.encode_clip_image_emb(clip_image, device, dtype)
         
     | 
| 1133 | 
         
            +
             
     | 
| 1134 | 
         
            +
                    # 4. Prepare timesteps
         
     | 
| 1135 | 
         
            +
                    timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
         
     | 
| 1136 | 
         
            +
                    num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
         
     | 
| 1137 | 
         
            +
                    self._num_timesteps = len(timesteps)
         
     | 
| 1138 | 
         
            +
             
     | 
| 1139 | 
         
            +
                    # 5. Prepare latent variables
         
     | 
| 1140 | 
         
            +
                    num_channels_latents = self.transformer.config.in_channels
         
     | 
| 1141 | 
         
            +
                    latents = self.prepare_latents(
         
     | 
| 1142 | 
         
            +
                        batch_size * num_images_per_prompt,
         
     | 
| 1143 | 
         
            +
                        num_channels_latents,
         
     | 
| 1144 | 
         
            +
                        height,
         
     | 
| 1145 | 
         
            +
                        width,
         
     | 
| 1146 | 
         
            +
                        prompt_embeds.dtype,
         
     | 
| 1147 | 
         
            +
                        device,
         
     | 
| 1148 | 
         
            +
                        generator,
         
     | 
| 1149 | 
         
            +
                        latents,
         
     | 
| 1150 | 
         
            +
                    )
         
     | 
| 1151 | 
         
            +
             
     | 
| 1152 | 
         
            +
                    # 6. Denoising loop
         
     | 
| 1153 | 
         
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         
     | 
| 1154 | 
         
            +
                        for i, t in enumerate(timesteps):
         
     | 
| 1155 | 
         
            +
                            if self.interrupt:
         
     | 
| 1156 | 
         
            +
                                continue
         
     | 
| 1157 | 
         
            +
             
     | 
| 1158 | 
         
            +
                            # expand the latents if we are doing classifier free guidance
         
     | 
| 1159 | 
         
            +
                            latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
         
     | 
| 1160 | 
         
            +
                            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         
     | 
| 1161 | 
         
            +
                            timestep = t.expand(latent_model_input.shape[0])
         
     | 
| 1162 | 
         
            +
             
     | 
| 1163 | 
         
            +
                            image_prompt_embeds, timestep_emb = self.image_proj_model(
         
     | 
| 1164 | 
         
            +
                                clip_image_embeds, 
         
     | 
| 1165 | 
         
            +
                                timestep.to(dtype=latents.dtype), 
         
     | 
| 1166 | 
         
            +
                                need_temb=True
         
     | 
| 1167 | 
         
            +
                            )
         
     | 
| 1168 | 
         
            +
             
     | 
| 1169 | 
         
            +
                            joint_attention_kwargs = dict(
         
     | 
| 1170 | 
         
            +
                                emb_dict=dict(
         
     | 
| 1171 | 
         
            +
                                    ip_hidden_states=image_prompt_embeds,
         
     | 
| 1172 | 
         
            +
                                    temb=timestep_emb,
         
     | 
| 1173 | 
         
            +
                                    scale=ipadapter_scale,
         
     | 
| 1174 | 
         
            +
                                )
         
     | 
| 1175 | 
         
            +
                            )
         
     | 
| 1176 | 
         
            +
             
     | 
| 1177 | 
         
            +
                            noise_pred = self.transformer(
         
     | 
| 1178 | 
         
            +
                                hidden_states=latent_model_input,
         
     | 
| 1179 | 
         
            +
                                timestep=timestep,
         
     | 
| 1180 | 
         
            +
                                encoder_hidden_states=prompt_embeds,
         
     | 
| 1181 | 
         
            +
                                pooled_projections=pooled_prompt_embeds,
         
     | 
| 1182 | 
         
            +
                                joint_attention_kwargs=joint_attention_kwargs,
         
     | 
| 1183 | 
         
            +
                                return_dict=False,
         
     | 
| 1184 | 
         
            +
                            )[0]
         
     | 
| 1185 | 
         
            +
             
     | 
| 1186 | 
         
            +
                            # perform guidance
         
     | 
| 1187 | 
         
            +
                            if self.do_classifier_free_guidance:
         
     | 
| 1188 | 
         
            +
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         
     | 
| 1189 | 
         
            +
                                noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
         
     | 
| 1190 | 
         
            +
             
     | 
| 1191 | 
         
            +
                            # compute the previous noisy sample x_t -> x_t-1
         
     | 
| 1192 | 
         
            +
                            latents_dtype = latents.dtype
         
     | 
| 1193 | 
         
            +
                            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
         
     | 
| 1194 | 
         
            +
             
     | 
| 1195 | 
         
            +
                            if latents.dtype != latents_dtype:
         
     | 
| 1196 | 
         
            +
                                if torch.backends.mps.is_available():
         
     | 
| 1197 | 
         
            +
                                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
         
     | 
| 1198 | 
         
            +
                                    latents = latents.to(latents_dtype)
         
     | 
| 1199 | 
         
            +
             
     | 
| 1200 | 
         
            +
                            if callback_on_step_end is not None:
         
     | 
| 1201 | 
         
            +
                                callback_kwargs = {}
         
     | 
| 1202 | 
         
            +
                                for k in callback_on_step_end_tensor_inputs:
         
     | 
| 1203 | 
         
            +
                                    callback_kwargs[k] = locals()[k]
         
     | 
| 1204 | 
         
            +
                                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
         
     | 
| 1205 | 
         
            +
             
     | 
| 1206 | 
         
            +
                                latents = callback_outputs.pop("latents", latents)
         
     | 
| 1207 | 
         
            +
                                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
         
     | 
| 1208 | 
         
            +
                                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
         
     | 
| 1209 | 
         
            +
                                negative_pooled_prompt_embeds = callback_outputs.pop(
         
     | 
| 1210 | 
         
            +
                                    "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
         
     | 
| 1211 | 
         
            +
                                )
         
     | 
| 1212 | 
         
            +
             
     | 
| 1213 | 
         
            +
                            # call the callback, if provided
         
     | 
| 1214 | 
         
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         
     | 
| 1215 | 
         
            +
                                progress_bar.update()
         
     | 
| 1216 | 
         
            +
             
     | 
| 1217 | 
         
            +
                            if XLA_AVAILABLE:
         
     | 
| 1218 | 
         
            +
                                xm.mark_step()
         
     | 
| 1219 | 
         
            +
             
     | 
| 1220 | 
         
            +
                    if output_type == "latent":
         
     | 
| 1221 | 
         
            +
                        image = latents
         
     | 
| 1222 | 
         
            +
             
     | 
| 1223 | 
         
            +
                    else:
         
     | 
| 1224 | 
         
            +
                        latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
         
     | 
| 1225 | 
         
            +
             
     | 
| 1226 | 
         
            +
                        image = self.vae.decode(latents, return_dict=False)[0]
         
     | 
| 1227 | 
         
            +
                        image = self.image_processor.postprocess(image, output_type=output_type)
         
     | 
| 1228 | 
         
            +
             
     | 
| 1229 | 
         
            +
                    # Offload all models
         
     | 
| 1230 | 
         
            +
                    self.maybe_free_model_hooks()
         
     | 
| 1231 | 
         
            +
             
     | 
| 1232 | 
         
            +
                    if not return_dict:
         
     | 
| 1233 | 
         
            +
                        return (image,)
         
     | 
| 1234 | 
         
            +
             
     | 
| 1235 | 
         
            +
                    return StableDiffusion3PipelineOutput(images=image)
         
     | 
    	
        pre-requirements.txt
    ADDED
    
    | 
         @@ -0,0 +1 @@ 
     | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            pip>=24.3.1
         
     | 
    	
        transformer_flux.py
    ADDED
    
    | 
         @@ -0,0 +1,567 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
         
     | 
| 2 | 
         
            +
            #
         
     | 
| 3 | 
         
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 4 | 
         
            +
            # you may not use this file except in compliance with the License.
         
     | 
| 5 | 
         
            +
            # You may obtain a copy of the License at
         
     | 
| 6 | 
         
            +
            #
         
     | 
| 7 | 
         
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 10 | 
         
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 11 | 
         
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 12 | 
         
            +
            # See the License for the specific language governing permissions and
         
     | 
| 13 | 
         
            +
            # limitations under the License.
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            from typing import Any, Dict, Optional, Tuple, Union
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            import numpy as np
         
     | 
| 19 | 
         
            +
            import torch
         
     | 
| 20 | 
         
            +
            import torch.nn as nn
         
     | 
| 21 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         
     | 
| 24 | 
         
            +
            from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
         
     | 
| 25 | 
         
            +
            from diffusers.models.attention import FeedForward
         
     | 
| 26 | 
         
            +
            from diffusers.models.attention_processor import (
         
     | 
| 27 | 
         
            +
                Attention,
         
     | 
| 28 | 
         
            +
                AttentionProcessor,
         
     | 
| 29 | 
         
            +
                FluxAttnProcessor2_0,
         
     | 
| 30 | 
         
            +
                FusedFluxAttnProcessor2_0,
         
     | 
| 31 | 
         
            +
            )
         
     | 
| 32 | 
         
            +
            from diffusers.models.modeling_utils import ModelMixin
         
     | 
| 33 | 
         
            +
            from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
         
     | 
| 34 | 
         
            +
            from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
         
     | 
| 35 | 
         
            +
            from diffusers.utils.torch_utils import maybe_allow_in_graph
         
     | 
| 36 | 
         
            +
            from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
         
     | 
| 37 | 
         
            +
            from diffusers.models.modeling_outputs import Transformer2DModelOutput
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            @maybe_allow_in_graph
         
     | 
| 43 | 
         
            +
            class FluxSingleTransformerBlock(nn.Module):
         
     | 
| 44 | 
         
            +
                r"""
         
     | 
| 45 | 
         
            +
                A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
                Reference: https://arxiv.org/abs/2403.03206
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                Parameters:
         
     | 
| 50 | 
         
            +
                    dim (`int`): The number of channels in the input and output.
         
     | 
| 51 | 
         
            +
                    num_attention_heads (`int`): The number of heads to use for multi-head attention.
         
     | 
| 52 | 
         
            +
                    attention_head_dim (`int`): The number of channels in each head.
         
     | 
| 53 | 
         
            +
                    context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
         
     | 
| 54 | 
         
            +
                        processing of `context` conditions.
         
     | 
| 55 | 
         
            +
                """
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
         
     | 
| 58 | 
         
            +
                    super().__init__()
         
     | 
| 59 | 
         
            +
                    self.mlp_hidden_dim = int(dim * mlp_ratio)
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                    self.norm = AdaLayerNormZeroSingle(dim)
         
     | 
| 62 | 
         
            +
                    self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
         
     | 
| 63 | 
         
            +
                    self.act_mlp = nn.GELU(approximate="tanh")
         
     | 
| 64 | 
         
            +
                    self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                    processor = FluxAttnProcessor2_0()
         
     | 
| 67 | 
         
            +
                    self.attn = Attention(
         
     | 
| 68 | 
         
            +
                        query_dim=dim,
         
     | 
| 69 | 
         
            +
                        cross_attention_dim=None,
         
     | 
| 70 | 
         
            +
                        dim_head=attention_head_dim,
         
     | 
| 71 | 
         
            +
                        heads=num_attention_heads,
         
     | 
| 72 | 
         
            +
                        out_dim=dim,
         
     | 
| 73 | 
         
            +
                        bias=True,
         
     | 
| 74 | 
         
            +
                        processor=processor,
         
     | 
| 75 | 
         
            +
                        qk_norm="rms_norm",
         
     | 
| 76 | 
         
            +
                        eps=1e-6,
         
     | 
| 77 | 
         
            +
                        pre_only=True,
         
     | 
| 78 | 
         
            +
                    )
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                def forward(
         
     | 
| 81 | 
         
            +
                    self,
         
     | 
| 82 | 
         
            +
                    hidden_states: torch.FloatTensor,
         
     | 
| 83 | 
         
            +
                    temb: torch.FloatTensor,
         
     | 
| 84 | 
         
            +
                    image_emb=None,
         
     | 
| 85 | 
         
            +
                    image_rotary_emb=None,
         
     | 
| 86 | 
         
            +
                ):
         
     | 
| 87 | 
         
            +
                    residual = hidden_states
         
     | 
| 88 | 
         
            +
                    norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
         
     | 
| 89 | 
         
            +
                    mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
         
     | 
| 90 | 
         
            +
                    
         
     | 
| 91 | 
         
            +
                    attn_output = self.attn(
         
     | 
| 92 | 
         
            +
                        hidden_states=norm_hidden_states,
         
     | 
| 93 | 
         
            +
                        image_rotary_emb=image_rotary_emb,
         
     | 
| 94 | 
         
            +
                        image_emb=image_emb,
         
     | 
| 95 | 
         
            +
                    )
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                    hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
         
     | 
| 98 | 
         
            +
                    gate = gate.unsqueeze(1) # torch.Size([1, 1, 3072])
         
     | 
| 99 | 
         
            +
                    hidden_states = gate * self.proj_out(hidden_states) # torch.Size([1, 4352, 3072])
         
     | 
| 100 | 
         
            +
                            
         
     | 
| 101 | 
         
            +
                    hidden_states = residual + hidden_states
         
     | 
| 102 | 
         
            +
                    if hidden_states.dtype == torch.float16:
         
     | 
| 103 | 
         
            +
                        hidden_states = hidden_states.clip(-65504, 65504)
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                    return hidden_states
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
            @maybe_allow_in_graph
         
     | 
| 109 | 
         
            +
            class FluxTransformerBlock(nn.Module):
         
     | 
| 110 | 
         
            +
                r"""
         
     | 
| 111 | 
         
            +
                A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                Reference: https://arxiv.org/abs/2403.03206
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                Parameters:
         
     | 
| 116 | 
         
            +
                    dim (`int`): The number of channels in the input and output.
         
     | 
| 117 | 
         
            +
                    num_attention_heads (`int`): The number of heads to use for multi-head attention.
         
     | 
| 118 | 
         
            +
                    attention_head_dim (`int`): The number of channels in each head.
         
     | 
| 119 | 
         
            +
                    context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
         
     | 
| 120 | 
         
            +
                        processing of `context` conditions.
         
     | 
| 121 | 
         
            +
                """
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6):
         
     | 
| 124 | 
         
            +
                    super().__init__()
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                    self.norm1 = AdaLayerNormZero(dim)
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                    self.norm1_context = AdaLayerNormZero(dim)
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                    if hasattr(F, "scaled_dot_product_attention"):
         
     | 
| 131 | 
         
            +
                        processor = FluxAttnProcessor2_0()
         
     | 
| 132 | 
         
            +
                    else:
         
     | 
| 133 | 
         
            +
                        raise ValueError(
         
     | 
| 134 | 
         
            +
                            "The current PyTorch version does not support the `scaled_dot_product_attention` function."
         
     | 
| 135 | 
         
            +
                        )
         
     | 
| 136 | 
         
            +
                    self.attn = Attention(
         
     | 
| 137 | 
         
            +
                        query_dim=dim,
         
     | 
| 138 | 
         
            +
                        cross_attention_dim=None,
         
     | 
| 139 | 
         
            +
                        added_kv_proj_dim=dim,
         
     | 
| 140 | 
         
            +
                        dim_head=attention_head_dim,
         
     | 
| 141 | 
         
            +
                        heads=num_attention_heads,
         
     | 
| 142 | 
         
            +
                        out_dim=dim,
         
     | 
| 143 | 
         
            +
                        context_pre_only=False,
         
     | 
| 144 | 
         
            +
                        bias=True,
         
     | 
| 145 | 
         
            +
                        processor=processor,
         
     | 
| 146 | 
         
            +
                        qk_norm=qk_norm,
         
     | 
| 147 | 
         
            +
                        eps=eps,
         
     | 
| 148 | 
         
            +
                    )
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                    self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
         
     | 
| 151 | 
         
            +
                    self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                    self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
         
     | 
| 154 | 
         
            +
                    self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                    # let chunk size default to None
         
     | 
| 157 | 
         
            +
                    self._chunk_size = None
         
     | 
| 158 | 
         
            +
                    self._chunk_dim = 0
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                def forward(
         
     | 
| 161 | 
         
            +
                    self,
         
     | 
| 162 | 
         
            +
                    hidden_states: torch.FloatTensor,
         
     | 
| 163 | 
         
            +
                    encoder_hidden_states: torch.FloatTensor,
         
     | 
| 164 | 
         
            +
                    temb: torch.FloatTensor,
         
     | 
| 165 | 
         
            +
                    image_emb=None,
         
     | 
| 166 | 
         
            +
                    image_rotary_emb=None,
         
     | 
| 167 | 
         
            +
                ):
         
     | 
| 168 | 
         
            +
                    norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                    norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
         
     | 
| 171 | 
         
            +
                        encoder_hidden_states, emb=temb
         
     | 
| 172 | 
         
            +
                    )
         
     | 
| 173 | 
         
            +
                    
         
     | 
| 174 | 
         
            +
                    # Attention.
         
     | 
| 175 | 
         
            +
                    attn_output, context_attn_output = self.attn(
         
     | 
| 176 | 
         
            +
                        hidden_states=norm_hidden_states,
         
     | 
| 177 | 
         
            +
                        encoder_hidden_states=norm_encoder_hidden_states,
         
     | 
| 178 | 
         
            +
                        image_rotary_emb=image_rotary_emb,
         
     | 
| 179 | 
         
            +
                        image_emb=image_emb,
         
     | 
| 180 | 
         
            +
                    )
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                    # Process attention outputs for the `hidden_states`.
         
     | 
| 183 | 
         
            +
                    attn_output = gate_msa.unsqueeze(1) * attn_output
         
     | 
| 184 | 
         
            +
                    hidden_states = hidden_states + attn_output
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
                    norm_hidden_states = self.norm2(hidden_states)
         
     | 
| 187 | 
         
            +
                    norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
                    ff_output = self.ff(norm_hidden_states)
         
     | 
| 190 | 
         
            +
                    ff_output = gate_mlp.unsqueeze(1) * ff_output
         
     | 
| 191 | 
         
            +
                    hidden_states = hidden_states + ff_output
         
     | 
| 192 | 
         
            +
                    
         
     | 
| 193 | 
         
            +
                    # Process attention outputs for the `encoder_hidden_states`.
         
     | 
| 194 | 
         
            +
                    context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
         
     | 
| 195 | 
         
            +
                    encoder_hidden_states = encoder_hidden_states + context_attn_output
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
                    norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
         
     | 
| 198 | 
         
            +
                    norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                    context_ff_output = self.ff_context(norm_encoder_hidden_states)
         
     | 
| 201 | 
         
            +
                    encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
         
     | 
| 202 | 
         
            +
                    if encoder_hidden_states.dtype == torch.float16:
         
     | 
| 203 | 
         
            +
                        encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
                    return encoder_hidden_states, hidden_states
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
            class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
         
     | 
| 209 | 
         
            +
                """
         
     | 
| 210 | 
         
            +
                The Transformer model introduced in Flux.
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                Parameters:
         
     | 
| 215 | 
         
            +
                    patch_size (`int`): Patch size to turn the input data into small patches.
         
     | 
| 216 | 
         
            +
                    in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
         
     | 
| 217 | 
         
            +
                    num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
         
     | 
| 218 | 
         
            +
                    num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
         
     | 
| 219 | 
         
            +
                    attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
         
     | 
| 220 | 
         
            +
                    num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
         
     | 
| 221 | 
         
            +
                    joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
         
     | 
| 222 | 
         
            +
                    pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
         
     | 
| 223 | 
         
            +
                    guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
         
     | 
| 224 | 
         
            +
                """
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                _supports_gradient_checkpointing = True
         
     | 
| 227 | 
         
            +
                _no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
                @register_to_config
         
     | 
| 230 | 
         
            +
                def __init__(
         
     | 
| 231 | 
         
            +
                    self,
         
     | 
| 232 | 
         
            +
                    patch_size: int = 1,
         
     | 
| 233 | 
         
            +
                    in_channels: int = 64,
         
     | 
| 234 | 
         
            +
                    num_layers: int = 19,
         
     | 
| 235 | 
         
            +
                    num_single_layers: int = 38,
         
     | 
| 236 | 
         
            +
                    attention_head_dim: int = 128,
         
     | 
| 237 | 
         
            +
                    num_attention_heads: int = 24,
         
     | 
| 238 | 
         
            +
                    joint_attention_dim: int = 4096,
         
     | 
| 239 | 
         
            +
                    pooled_projection_dim: int = 768,
         
     | 
| 240 | 
         
            +
                    guidance_embeds: bool = False,
         
     | 
| 241 | 
         
            +
                    axes_dims_rope: Tuple[int] = (16, 56, 56),
         
     | 
| 242 | 
         
            +
                ):
         
     | 
| 243 | 
         
            +
                    super().__init__()
         
     | 
| 244 | 
         
            +
                    self.out_channels = in_channels
         
     | 
| 245 | 
         
            +
                    self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
                    self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                    text_time_guidance_cls = (
         
     | 
| 250 | 
         
            +
                        CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
         
     | 
| 251 | 
         
            +
                    )
         
     | 
| 252 | 
         
            +
                    self.time_text_embed = text_time_guidance_cls(
         
     | 
| 253 | 
         
            +
                        embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
         
     | 
| 254 | 
         
            +
                    )
         
     | 
| 255 | 
         
            +
             
     | 
| 256 | 
         
            +
                    self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
         
     | 
| 257 | 
         
            +
                    self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                    self.transformer_blocks = nn.ModuleList(
         
     | 
| 260 | 
         
            +
                        [
         
     | 
| 261 | 
         
            +
                            FluxTransformerBlock(
         
     | 
| 262 | 
         
            +
                                dim=self.inner_dim,
         
     | 
| 263 | 
         
            +
                                num_attention_heads=self.config.num_attention_heads,
         
     | 
| 264 | 
         
            +
                                attention_head_dim=self.config.attention_head_dim,
         
     | 
| 265 | 
         
            +
                            )
         
     | 
| 266 | 
         
            +
                            for i in range(self.config.num_layers)
         
     | 
| 267 | 
         
            +
                        ]
         
     | 
| 268 | 
         
            +
                    )
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
                    self.single_transformer_blocks = nn.ModuleList(
         
     | 
| 271 | 
         
            +
                        [
         
     | 
| 272 | 
         
            +
                            FluxSingleTransformerBlock(
         
     | 
| 273 | 
         
            +
                                dim=self.inner_dim,
         
     | 
| 274 | 
         
            +
                                num_attention_heads=self.config.num_attention_heads,
         
     | 
| 275 | 
         
            +
                                attention_head_dim=self.config.attention_head_dim,
         
     | 
| 276 | 
         
            +
                            )
         
     | 
| 277 | 
         
            +
                            for i in range(self.config.num_single_layers)
         
     | 
| 278 | 
         
            +
                        ]
         
     | 
| 279 | 
         
            +
                    )
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
                    self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
         
     | 
| 282 | 
         
            +
                    self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
                    self.gradient_checkpointing = False
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
                @property
         
     | 
| 287 | 
         
            +
                # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
         
     | 
| 288 | 
         
            +
                def attn_processors(self) -> Dict[str, AttentionProcessor]:
         
     | 
| 289 | 
         
            +
                    r"""
         
     | 
| 290 | 
         
            +
                    Returns:
         
     | 
| 291 | 
         
            +
                        `dict` of attention processors: A dictionary containing all attention processors used in the model with
         
     | 
| 292 | 
         
            +
                        indexed by its weight name.
         
     | 
| 293 | 
         
            +
                    """
         
     | 
| 294 | 
         
            +
                    # set recursively
         
     | 
| 295 | 
         
            +
                    processors = {}
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
                    def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
         
     | 
| 298 | 
         
            +
                        if hasattr(module, "get_processor"):
         
     | 
| 299 | 
         
            +
                            processors[f"{name}.processor"] = module.get_processor()
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
                        for sub_name, child in module.named_children():
         
     | 
| 302 | 
         
            +
                            fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                        return processors
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                    for name, module in self.named_children():
         
     | 
| 307 | 
         
            +
                        fn_recursive_add_processors(name, module, processors)
         
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
                    return processors
         
     | 
| 310 | 
         
            +
             
     | 
| 311 | 
         
            +
                # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
         
     | 
| 312 | 
         
            +
                def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
         
     | 
| 313 | 
         
            +
                    r"""
         
     | 
| 314 | 
         
            +
                    Sets the attention processor to use to compute attention.
         
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
                    Parameters:
         
     | 
| 317 | 
         
            +
                        processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
         
     | 
| 318 | 
         
            +
                            The instantiated processor class or a dictionary of processor classes that will be set as the processor
         
     | 
| 319 | 
         
            +
                            for **all** `Attention` layers.
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                            If `processor` is a dict, the key needs to define the path to the corresponding cross attention
         
     | 
| 322 | 
         
            +
                            processor. This is strongly recommended when setting trainable attention processors.
         
     | 
| 323 | 
         
            +
             
     | 
| 324 | 
         
            +
                    """
         
     | 
| 325 | 
         
            +
                    count = len(self.attn_processors.keys())
         
     | 
| 326 | 
         
            +
             
     | 
| 327 | 
         
            +
                    if isinstance(processor, dict) and len(processor) != count:
         
     | 
| 328 | 
         
            +
                        raise ValueError(
         
     | 
| 329 | 
         
            +
                            f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
         
     | 
| 330 | 
         
            +
                            f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
         
     | 
| 331 | 
         
            +
                        )
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                    def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
         
     | 
| 334 | 
         
            +
                        if hasattr(module, "set_processor"):
         
     | 
| 335 | 
         
            +
                            if not isinstance(processor, dict):
         
     | 
| 336 | 
         
            +
                                module.set_processor(processor)
         
     | 
| 337 | 
         
            +
                            else:
         
     | 
| 338 | 
         
            +
                                module.set_processor(processor.pop(f"{name}.processor"))
         
     | 
| 339 | 
         
            +
             
     | 
| 340 | 
         
            +
                        for sub_name, child in module.named_children():
         
     | 
| 341 | 
         
            +
                            fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
                    for name, module in self.named_children():
         
     | 
| 344 | 
         
            +
                        fn_recursive_attn_processor(name, module, processor)
         
     | 
| 345 | 
         
            +
             
     | 
| 346 | 
         
            +
                # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
         
     | 
| 347 | 
         
            +
                def fuse_qkv_projections(self):
         
     | 
| 348 | 
         
            +
                    """
         
     | 
| 349 | 
         
            +
                    Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
         
     | 
| 350 | 
         
            +
                    are fused. For cross-attention modules, key and value projection matrices are fused.
         
     | 
| 351 | 
         
            +
             
     | 
| 352 | 
         
            +
                    <Tip warning={true}>
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                    This API is 🧪 experimental.
         
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
                    </Tip>
         
     | 
| 357 | 
         
            +
                    """
         
     | 
| 358 | 
         
            +
                    self.original_attn_processors = None
         
     | 
| 359 | 
         
            +
             
     | 
| 360 | 
         
            +
                    for _, attn_processor in self.attn_processors.items():
         
     | 
| 361 | 
         
            +
                        if "Added" in str(attn_processor.__class__.__name__):
         
     | 
| 362 | 
         
            +
                            raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
         
     | 
| 363 | 
         
            +
             
     | 
| 364 | 
         
            +
                    self.original_attn_processors = self.attn_processors
         
     | 
| 365 | 
         
            +
             
     | 
| 366 | 
         
            +
                    for module in self.modules():
         
     | 
| 367 | 
         
            +
                        if isinstance(module, Attention):
         
     | 
| 368 | 
         
            +
                            module.fuse_projections(fuse=True)
         
     | 
| 369 | 
         
            +
             
     | 
| 370 | 
         
            +
                    self.set_attn_processor(FusedFluxAttnProcessor2_0())
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
         
     | 
| 373 | 
         
            +
                def unfuse_qkv_projections(self):
         
     | 
| 374 | 
         
            +
                    """Disables the fused QKV projection if enabled.
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                    <Tip warning={true}>
         
     | 
| 377 | 
         
            +
             
     | 
| 378 | 
         
            +
                    This API is 🧪 experimental.
         
     | 
| 379 | 
         
            +
             
     | 
| 380 | 
         
            +
                    </Tip>
         
     | 
| 381 | 
         
            +
             
     | 
| 382 | 
         
            +
                    """
         
     | 
| 383 | 
         
            +
                    if self.original_attn_processors is not None:
         
     | 
| 384 | 
         
            +
                        self.set_attn_processor(self.original_attn_processors)
         
     | 
| 385 | 
         
            +
             
     | 
| 386 | 
         
            +
                def _set_gradient_checkpointing(self, module, value=False):
         
     | 
| 387 | 
         
            +
                    if hasattr(module, "gradient_checkpointing"):
         
     | 
| 388 | 
         
            +
                        module.gradient_checkpointing = value
         
     | 
| 389 | 
         
            +
             
     | 
| 390 | 
         
            +
                def forward(
         
     | 
| 391 | 
         
            +
                    self,
         
     | 
| 392 | 
         
            +
                    hidden_states: torch.Tensor,
         
     | 
| 393 | 
         
            +
                    encoder_hidden_states: torch.Tensor = None,
         
     | 
| 394 | 
         
            +
                    image_emb: torch.FloatTensor = None,
         
     | 
| 395 | 
         
            +
                    pooled_projections: torch.Tensor = None,
         
     | 
| 396 | 
         
            +
                    timestep: torch.LongTensor = None,
         
     | 
| 397 | 
         
            +
                    img_ids: torch.Tensor = None,
         
     | 
| 398 | 
         
            +
                    txt_ids: torch.Tensor = None,
         
     | 
| 399 | 
         
            +
                    guidance: torch.Tensor = None,
         
     | 
| 400 | 
         
            +
                    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
         
     | 
| 401 | 
         
            +
                    controlnet_block_samples=None,
         
     | 
| 402 | 
         
            +
                    controlnet_single_block_samples=None,
         
     | 
| 403 | 
         
            +
                    return_dict: bool = True,
         
     | 
| 404 | 
         
            +
                ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
         
     | 
| 405 | 
         
            +
                    """
         
     | 
| 406 | 
         
            +
                    The [`FluxTransformer2DModel`] forward method.
         
     | 
| 407 | 
         
            +
             
     | 
| 408 | 
         
            +
                    Args:
         
     | 
| 409 | 
         
            +
                        hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
         
     | 
| 410 | 
         
            +
                            Input `hidden_states`.
         
     | 
| 411 | 
         
            +
                        encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
         
     | 
| 412 | 
         
            +
                            Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
         
     | 
| 413 | 
         
            +
                        pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
         
     | 
| 414 | 
         
            +
                            from the embeddings of input conditions.
         
     | 
| 415 | 
         
            +
                        timestep ( `torch.LongTensor`):
         
     | 
| 416 | 
         
            +
                            Used to indicate denoising step.
         
     | 
| 417 | 
         
            +
                        block_controlnet_hidden_states: (`list` of `torch.Tensor`):
         
     | 
| 418 | 
         
            +
                            A list of tensors that if specified are added to the residuals of transformer blocks.
         
     | 
| 419 | 
         
            +
                        joint_attention_kwargs (`dict`, *optional*):
         
     | 
| 420 | 
         
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         
     | 
| 421 | 
         
            +
                            `self.processor` in
         
     | 
| 422 | 
         
            +
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         
     | 
| 423 | 
         
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         
     | 
| 424 | 
         
            +
                            Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
         
     | 
| 425 | 
         
            +
                            tuple.
         
     | 
| 426 | 
         
            +
             
     | 
| 427 | 
         
            +
                    Returns:
         
     | 
| 428 | 
         
            +
                        If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
         
     | 
| 429 | 
         
            +
                        `tuple` where the first element is the sample tensor.
         
     | 
| 430 | 
         
            +
                    """
         
     | 
| 431 | 
         
            +
                    if joint_attention_kwargs is not None:
         
     | 
| 432 | 
         
            +
                        joint_attention_kwargs = joint_attention_kwargs.copy()
         
     | 
| 433 | 
         
            +
                        lora_scale = joint_attention_kwargs.pop("scale", 1.0)
         
     | 
| 434 | 
         
            +
                    else:
         
     | 
| 435 | 
         
            +
                        lora_scale = 1.0
         
     | 
| 436 | 
         
            +
             
     | 
| 437 | 
         
            +
                    if USE_PEFT_BACKEND:
         
     | 
| 438 | 
         
            +
                        # weight the lora layers by setting `lora_scale` for each PEFT layer
         
     | 
| 439 | 
         
            +
                        scale_lora_layers(self, lora_scale)
         
     | 
| 440 | 
         
            +
                    else:
         
     | 
| 441 | 
         
            +
                        if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
         
     | 
| 442 | 
         
            +
                            logger.warning(
         
     | 
| 443 | 
         
            +
                                "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
         
     | 
| 444 | 
         
            +
                            )
         
     | 
| 445 | 
         
            +
                    hidden_states = self.x_embedder(hidden_states)
         
     | 
| 446 | 
         
            +
             
     | 
| 447 | 
         
            +
                    timestep = timestep.to(hidden_states.dtype) * 1000
         
     | 
| 448 | 
         
            +
                    if guidance is not None:
         
     | 
| 449 | 
         
            +
                        guidance = guidance.to(hidden_states.dtype) * 1000
         
     | 
| 450 | 
         
            +
                    else:
         
     | 
| 451 | 
         
            +
                        guidance = None
         
     | 
| 452 | 
         
            +
                    temb = (
         
     | 
| 453 | 
         
            +
                        self.time_text_embed(timestep, pooled_projections)
         
     | 
| 454 | 
         
            +
                        if guidance is None
         
     | 
| 455 | 
         
            +
                        else self.time_text_embed(timestep, guidance, pooled_projections)
         
     | 
| 456 | 
         
            +
                    )
         
     | 
| 457 | 
         
            +
                    # torch.Size([1, 512*num_prompt, 4096]) -> torch.Size([1, 512*num_prompt, 3072])
         
     | 
| 458 | 
         
            +
                    encoder_hidden_states = self.context_embedder(encoder_hidden_states)
         
     | 
| 459 | 
         
            +
             
     | 
| 460 | 
         
            +
                    if txt_ids.ndim == 3:
         
     | 
| 461 | 
         
            +
                        logger.warning(
         
     | 
| 462 | 
         
            +
                            "Passing `txt_ids` 3d torch.Tensor is deprecated."
         
     | 
| 463 | 
         
            +
                            "Please remove the batch dimension and pass it as a 2d torch Tensor"
         
     | 
| 464 | 
         
            +
                        )
         
     | 
| 465 | 
         
            +
                        txt_ids = txt_ids[0]
         
     | 
| 466 | 
         
            +
                    if img_ids.ndim == 3:
         
     | 
| 467 | 
         
            +
                        logger.warning(
         
     | 
| 468 | 
         
            +
                            "Passing `img_ids` 3d torch.Tensor is deprecated."
         
     | 
| 469 | 
         
            +
                            "Please remove the batch dimension and pass it as a 2d torch Tensor"
         
     | 
| 470 | 
         
            +
                        )
         
     | 
| 471 | 
         
            +
                        img_ids = img_ids[0]
         
     | 
| 472 | 
         
            +
             
     | 
| 473 | 
         
            +
                    ids = torch.cat((txt_ids, img_ids), dim=0)
         
     | 
| 474 | 
         
            +
                    image_rotary_emb = self.pos_embed(ids)
         
     | 
| 475 | 
         
            +
                    
         
     | 
| 476 | 
         
            +
                    for index_block, block in enumerate(self.transformer_blocks):
         
     | 
| 477 | 
         
            +
                        if self.training and self.gradient_checkpointing:
         
     | 
| 478 | 
         
            +
             
     | 
| 479 | 
         
            +
                            def create_custom_forward(module, return_dict=None):
         
     | 
| 480 | 
         
            +
                                def custom_forward(*inputs):
         
     | 
| 481 | 
         
            +
                                    if return_dict is not None:
         
     | 
| 482 | 
         
            +
                                        return module(*inputs, return_dict=return_dict)
         
     | 
| 483 | 
         
            +
                                    else:
         
     | 
| 484 | 
         
            +
                                        return module(*inputs)
         
     | 
| 485 | 
         
            +
             
     | 
| 486 | 
         
            +
                                return custom_forward
         
     | 
| 487 | 
         
            +
             
     | 
| 488 | 
         
            +
                            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
         
     | 
| 489 | 
         
            +
                            encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
         
     | 
| 490 | 
         
            +
                                create_custom_forward(block),
         
     | 
| 491 | 
         
            +
                                hidden_states,
         
     | 
| 492 | 
         
            +
                                encoder_hidden_states,
         
     | 
| 493 | 
         
            +
                                temb,
         
     | 
| 494 | 
         
            +
                                image_emb,
         
     | 
| 495 | 
         
            +
                                image_rotary_emb,
         
     | 
| 496 | 
         
            +
                                **ckpt_kwargs,
         
     | 
| 497 | 
         
            +
                            )
         
     | 
| 498 | 
         
            +
             
     | 
| 499 | 
         
            +
                        else:
         
     | 
| 500 | 
         
            +
                            encoder_hidden_states, hidden_states = block(
         
     | 
| 501 | 
         
            +
                                hidden_states=hidden_states,
         
     | 
| 502 | 
         
            +
                                encoder_hidden_states=encoder_hidden_states,
         
     | 
| 503 | 
         
            +
                                temb=temb,
         
     | 
| 504 | 
         
            +
                                image_emb=image_emb,
         
     | 
| 505 | 
         
            +
                                image_rotary_emb=image_rotary_emb,
         
     | 
| 506 | 
         
            +
                            )
         
     | 
| 507 | 
         
            +
                                    
         
     | 
| 508 | 
         
            +
                        # controlnet residual
         
     | 
| 509 | 
         
            +
                        if controlnet_block_samples is not None:
         
     | 
| 510 | 
         
            +
                            interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
         
     | 
| 511 | 
         
            +
                            interval_control = int(np.ceil(interval_control))
         
     | 
| 512 | 
         
            +
                            hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
         
     | 
| 513 | 
         
            +
             
     | 
| 514 | 
         
            +
                    hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
         
     | 
| 515 | 
         
            +
             
     | 
| 516 | 
         
            +
                    for index_block, block in enumerate(self.single_transformer_blocks):
         
     | 
| 517 | 
         
            +
                        if self.training and self.gradient_checkpointing:
         
     | 
| 518 | 
         
            +
             
     | 
| 519 | 
         
            +
                            def create_custom_forward(module, return_dict=None):
         
     | 
| 520 | 
         
            +
                                def custom_forward(*inputs):
         
     | 
| 521 | 
         
            +
                                    if return_dict is not None:
         
     | 
| 522 | 
         
            +
                                        return module(*inputs, return_dict=return_dict)
         
     | 
| 523 | 
         
            +
                                    else:
         
     | 
| 524 | 
         
            +
                                        return module(*inputs)
         
     | 
| 525 | 
         
            +
             
     | 
| 526 | 
         
            +
                                return custom_forward
         
     | 
| 527 | 
         
            +
             
     | 
| 528 | 
         
            +
                            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
         
     | 
| 529 | 
         
            +
                            hidden_states = torch.utils.checkpoint.checkpoint(
         
     | 
| 530 | 
         
            +
                                create_custom_forward(block),
         
     | 
| 531 | 
         
            +
                                hidden_states,
         
     | 
| 532 | 
         
            +
                                temb,
         
     | 
| 533 | 
         
            +
                                image_emb,
         
     | 
| 534 | 
         
            +
                                image_rotary_emb,
         
     | 
| 535 | 
         
            +
                                **ckpt_kwargs,
         
     | 
| 536 | 
         
            +
                            )
         
     | 
| 537 | 
         
            +
             
     | 
| 538 | 
         
            +
                        else:
         
     | 
| 539 | 
         
            +
                            hidden_states = block(
         
     | 
| 540 | 
         
            +
                                hidden_states=hidden_states,
         
     | 
| 541 | 
         
            +
                                temb=temb,
         
     | 
| 542 | 
         
            +
                                image_emb=image_emb,
         
     | 
| 543 | 
         
            +
                                image_rotary_emb=image_rotary_emb,
         
     | 
| 544 | 
         
            +
                            )
         
     | 
| 545 | 
         
            +
                                    
         
     | 
| 546 | 
         
            +
                        # controlnet residual
         
     | 
| 547 | 
         
            +
                        if controlnet_single_block_samples is not None:
         
     | 
| 548 | 
         
            +
                            interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
         
     | 
| 549 | 
         
            +
                            interval_control = int(np.ceil(interval_control))
         
     | 
| 550 | 
         
            +
                            hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
         
     | 
| 551 | 
         
            +
                                hidden_states[:, encoder_hidden_states.shape[1] :, ...]
         
     | 
| 552 | 
         
            +
                                + controlnet_single_block_samples[index_block // interval_control]
         
     | 
| 553 | 
         
            +
                            )
         
     | 
| 554 | 
         
            +
             
     | 
| 555 | 
         
            +
                    hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
         
     | 
| 556 | 
         
            +
                    
         
     | 
| 557 | 
         
            +
                    hidden_states = self.norm_out(hidden_states, temb)
         
     | 
| 558 | 
         
            +
                    output = self.proj_out(hidden_states)
         
     | 
| 559 | 
         
            +
             
     | 
| 560 | 
         
            +
                    if USE_PEFT_BACKEND:
         
     | 
| 561 | 
         
            +
                        # remove `lora_scale` from each PEFT layer
         
     | 
| 562 | 
         
            +
                        unscale_lora_layers(self, lora_scale)
         
     | 
| 563 | 
         
            +
             
     | 
| 564 | 
         
            +
                    if not return_dict:
         
     | 
| 565 | 
         
            +
                        return (output,)
         
     | 
| 566 | 
         
            +
             
     | 
| 567 | 
         
            +
                    return Transformer2DModelOutput(sample=output)
         
     |