Update app.py
Browse files
app.py
CHANGED
|
@@ -61,10 +61,11 @@ transformer = SD3Transformer2DModel.from_pretrained(
|
|
| 61 |
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
|
| 62 |
)
|
| 63 |
|
|
|
|
|
|
|
| 64 |
pipe = StableDiffusion3Pipeline.from_pretrained(
|
| 65 |
#"stabilityai # stable-diffusion-3.5-large",
|
| 66 |
"ford442/stable-diffusion-3.5-large-bf16",
|
| 67 |
-
# vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
|
| 68 |
#scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
|
| 69 |
text_encoder=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
|
| 70 |
text_encoder_2=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
|
|
@@ -74,13 +75,14 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
| 74 |
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", use_fast=True, subfolder="tokenizer_3", token=True),
|
| 75 |
torch_dtype=torch.bfloat16,
|
| 76 |
transformer=transformer,
|
|
|
|
| 77 |
#use_safetensors=False,
|
| 78 |
)
|
| 79 |
|
| 80 |
#pipe.to(device=device, dtype=torch.bfloat16)
|
| 81 |
|
| 82 |
pipe.to(device)
|
| 83 |
-
|
| 84 |
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 85 |
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 86 |
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
|
|
|
| 61 |
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
|
| 62 |
)
|
| 63 |
|
| 64 |
+
vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, low_cpu_mem_usage=False, subfolder='vae', torch_dtype=torch.float32, token=True)
|
| 65 |
+
|
| 66 |
pipe = StableDiffusion3Pipeline.from_pretrained(
|
| 67 |
#"stabilityai # stable-diffusion-3.5-large",
|
| 68 |
"ford442/stable-diffusion-3.5-large-bf16",
|
|
|
|
| 69 |
#scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
|
| 70 |
text_encoder=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
|
| 71 |
text_encoder_2=None, #CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
|
|
|
|
| 75 |
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", use_fast=True, subfolder="tokenizer_3", token=True),
|
| 76 |
torch_dtype=torch.bfloat16,
|
| 77 |
transformer=transformer,
|
| 78 |
+
vae=None
|
| 79 |
#use_safetensors=False,
|
| 80 |
)
|
| 81 |
|
| 82 |
#pipe.to(device=device, dtype=torch.bfloat16)
|
| 83 |
|
| 84 |
pipe.to(device)
|
| 85 |
+
pipe.vae=vaeX.to(device)
|
| 86 |
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 87 |
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 88 |
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|