Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,9 +15,7 @@ from models.transformer_sd3 import SD3Transformer2DModel
|
|
| 15 |
#from diffusers import StableDiffusion3Pipeline
|
| 16 |
from transformers import CLIPTextModelWithProjection, T5EncoderModel
|
| 17 |
from transformers import CLIPTokenizer, T5TokenizerFast
|
| 18 |
-
#from diffusers import SD3Transformer2DModel, AutoencoderKL
|
| 19 |
from diffusers import AutoencoderKL
|
| 20 |
-
#from models.transformer_sd3 import SD3Transformer2DModel
|
| 21 |
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
| 22 |
|
| 23 |
from image_gen_aux import UpscaleWithModel
|
|
@@ -59,7 +57,7 @@ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
| 59 |
torch_dtype = torch.bfloat16
|
| 60 |
|
| 61 |
transformer = SD3Transformer2DModel.from_pretrained(
|
| 62 |
-
model_path, subfolder="transformer"
|
| 63 |
)
|
| 64 |
|
| 65 |
vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, low_cpu_mem_usage=False, subfolder='vae', torch_dtype=torch.float32, token=True)
|
|
@@ -74,21 +72,19 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
| 74 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
| 75 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
| 76 |
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", use_fast=True, subfolder="tokenizer_3", token=True),
|
| 77 |
-
torch_dtype=torch.bfloat16,
|
| 78 |
transformer=transformer,
|
| 79 |
vae=None
|
| 80 |
#use_safetensors=False,
|
| 81 |
)
|
| 82 |
|
| 83 |
-
|
| 84 |
|
| 85 |
-
pipe.to(device)
|
| 86 |
pipe.vae=vaeX.to(device)
|
| 87 |
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 88 |
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 89 |
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
| 90 |
-
|
| 91 |
-
|
| 92 |
|
| 93 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
| 94 |
|
|
@@ -120,11 +116,9 @@ def infer(
|
|
| 120 |
image_encoder_path=None,
|
| 121 |
progress=gr.Progress(track_tqdm=True),
|
| 122 |
):
|
| 123 |
-
|
| 124 |
pipe.text_encoder=text_encoder
|
| 125 |
pipe.text_encoder_2=text_encoder_2
|
| 126 |
pipe.text_encoder_3=text_encoder_3
|
| 127 |
-
|
| 128 |
pipe.init_ipadapter(
|
| 129 |
ip_adapter_path=ipadapter_path,
|
| 130 |
image_encoder_path=image_encoder_path,
|
|
@@ -140,25 +134,25 @@ def infer(
|
|
| 140 |
sd_image_a = Image.open(latent_file.name).convert('RGB')
|
| 141 |
print("-- using image file and loading ip-adapter --")
|
| 142 |
#sd_image_a.resize((height,width), Image.LANCZOS)
|
| 143 |
-
sd_image_a.resize((
|
| 144 |
if latent_file_2 is not None: # Check if a latent file is provided
|
| 145 |
sd_image_b = Image.open(latent_file_2.name).convert('RGB')
|
| 146 |
-
sd_image_b.resize((
|
| 147 |
else:
|
| 148 |
sd_image_b = None
|
| 149 |
if latent_file_3 is not None: # Check if a latent file is provided
|
| 150 |
sd_image_c = Image.open(latent_file_3.name).convert('RGB')
|
| 151 |
-
sd_image_c.resize((
|
| 152 |
else:
|
| 153 |
sd_image_c = None
|
| 154 |
if latent_file_4 is not None: # Check if a latent file is provided
|
| 155 |
sd_image_d = Image.open(latent_file_4.name).convert('RGB')
|
| 156 |
-
sd_image_d.resize((
|
| 157 |
else:
|
| 158 |
sd_image_d = None
|
| 159 |
if latent_file_5 is not None: # Check if a latent file is provided
|
| 160 |
sd_image_e = Image.open(latent_file_5.name).convert('RGB')
|
| 161 |
-
sd_image_e.resize((
|
| 162 |
else:
|
| 163 |
sd_image_e = None
|
| 164 |
print('-- generating image --')
|
|
|
|
| 15 |
#from diffusers import StableDiffusion3Pipeline
|
| 16 |
from transformers import CLIPTextModelWithProjection, T5EncoderModel
|
| 17 |
from transformers import CLIPTokenizer, T5TokenizerFast
|
|
|
|
| 18 |
from diffusers import AutoencoderKL
|
|
|
|
| 19 |
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
| 20 |
|
| 21 |
from image_gen_aux import UpscaleWithModel
|
|
|
|
| 57 |
torch_dtype = torch.bfloat16
|
| 58 |
|
| 59 |
transformer = SD3Transformer2DModel.from_pretrained(
|
| 60 |
+
model_path, subfolder="transformer" #, torch_dtype=torch.bfloat16
|
| 61 |
)
|
| 62 |
|
| 63 |
vaeX=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", safety_checker=None, use_safetensors=True, low_cpu_mem_usage=False, subfolder='vae', torch_dtype=torch.float32, token=True)
|
|
|
|
| 72 |
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
| 73 |
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
| 74 |
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", use_fast=True, subfolder="tokenizer_3", token=True),
|
| 75 |
+
#torch_dtype=torch.bfloat16,
|
| 76 |
transformer=transformer,
|
| 77 |
vae=None
|
| 78 |
#use_safetensors=False,
|
| 79 |
)
|
| 80 |
|
| 81 |
+
pipe.to(device=device, dtype=torch.bfloat16)
|
| 82 |
|
| 83 |
+
#pipe.to(device)
|
| 84 |
pipe.vae=vaeX.to(device)
|
| 85 |
text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
|
| 86 |
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
| 87 |
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
|
|
|
|
|
|
| 88 |
|
| 89 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
| 90 |
|
|
|
|
| 116 |
image_encoder_path=None,
|
| 117 |
progress=gr.Progress(track_tqdm=True),
|
| 118 |
):
|
|
|
|
| 119 |
pipe.text_encoder=text_encoder
|
| 120 |
pipe.text_encoder_2=text_encoder_2
|
| 121 |
pipe.text_encoder_3=text_encoder_3
|
|
|
|
| 122 |
pipe.init_ipadapter(
|
| 123 |
ip_adapter_path=ipadapter_path,
|
| 124 |
image_encoder_path=image_encoder_path,
|
|
|
|
| 134 |
sd_image_a = Image.open(latent_file.name).convert('RGB')
|
| 135 |
print("-- using image file and loading ip-adapter --")
|
| 136 |
#sd_image_a.resize((height,width), Image.LANCZOS)
|
| 137 |
+
sd_image_a.resize((width,height), Image.LANCZOS)
|
| 138 |
if latent_file_2 is not None: # Check if a latent file is provided
|
| 139 |
sd_image_b = Image.open(latent_file_2.name).convert('RGB')
|
| 140 |
+
sd_image_b.resize((width,height), Image.LANCZOS)
|
| 141 |
else:
|
| 142 |
sd_image_b = None
|
| 143 |
if latent_file_3 is not None: # Check if a latent file is provided
|
| 144 |
sd_image_c = Image.open(latent_file_3.name).convert('RGB')
|
| 145 |
+
sd_image_c.resize((width,height), Image.LANCZOS)
|
| 146 |
else:
|
| 147 |
sd_image_c = None
|
| 148 |
if latent_file_4 is not None: # Check if a latent file is provided
|
| 149 |
sd_image_d = Image.open(latent_file_4.name).convert('RGB')
|
| 150 |
+
sd_image_d.resize((width,height), Image.LANCZOS)
|
| 151 |
else:
|
| 152 |
sd_image_d = None
|
| 153 |
if latent_file_5 is not None: # Check if a latent file is provided
|
| 154 |
sd_image_e = Image.open(latent_file_5.name).convert('RGB')
|
| 155 |
+
sd_image_e.resize((width,height), Image.LANCZOS)
|
| 156 |
else:
|
| 157 |
sd_image_e = None
|
| 158 |
print('-- generating image --')
|