Update app.py
Browse files
app.py
CHANGED
|
@@ -38,8 +38,6 @@ torch.backends.cudnn.benchmark = False
|
|
| 38 |
|
| 39 |
hftoken = os.getenv("HF_TOKEN")
|
| 40 |
|
| 41 |
-
#image_encoder_path = "google/siglip-so400m-patch14-384"
|
| 42 |
-
#image_encoder_path_b = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
|
| 43 |
ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin")
|
| 44 |
model_path = 'ford442/stable-diffusion-3.5-large-bf16'
|
| 45 |
|
|
@@ -82,8 +80,6 @@ pipe = StableDiffusion3Pipeline.from_pretrained(
|
|
| 82 |
|
| 83 |
pipe.to(device)
|
| 84 |
|
| 85 |
-
#pipe.to(device=device, dtype=torch.bfloat16)
|
| 86 |
-
|
| 87 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
| 88 |
|
| 89 |
MAX_SEED = np.iinfo(np.int32).max
|
|
@@ -99,7 +95,7 @@ def infer(
|
|
| 99 |
height,
|
| 100 |
guidance_scale,
|
| 101 |
num_inference_steps,
|
| 102 |
-
latent_file,
|
| 103 |
ip_scale,
|
| 104 |
image_encoder_path,
|
| 105 |
progress=gr.Progress(track_tqdm=True),
|
|
@@ -110,30 +106,20 @@ def infer(
|
|
| 110 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 111 |
enhanced_prompt = prompt
|
| 112 |
enhanced_prompt_2 = prompt
|
| 113 |
-
|
| 114 |
-
if latent_file: # Check if a latent file is provided
|
| 115 |
-
# initial_latents = pipe.prepare_latents(
|
| 116 |
-
# batch_size=1,
|
| 117 |
-
# num_channels_latents=pipe.transformer.in_channels,
|
| 118 |
-
# height=pipe.transformer.config.sample_size[0],
|
| 119 |
-
# width=pipe.transformer.config.sample_size[1],
|
| 120 |
-
# dtype=pipe.transformer.dtype,
|
| 121 |
-
# device=pipe.device,
|
| 122 |
-
# generator=generator,
|
| 123 |
-
# )
|
| 124 |
sd_image_a = Image.open(latent_file.name).convert('RGB')
|
| 125 |
print("-- using image file and loading ip-adapter --")
|
|
|
|
| 126 |
pipe.init_ipadapter(
|
| 127 |
ip_adapter_path=ipadapter_path,
|
| 128 |
image_encoder_path=image_encoder_path,
|
| 129 |
nb_token=64,
|
| 130 |
)
|
| 131 |
print('-- generating image --')
|
| 132 |
-
#with torch.no_grad():
|
| 133 |
sd_image = pipe(
|
| 134 |
width=width,
|
| 135 |
height=height,
|
| 136 |
-
prompt=enhanced_prompt,
|
| 137 |
negative_prompt=negative_prompt_1,
|
| 138 |
num_inference_steps=num_inference_steps,
|
| 139 |
guidance_scale=guidance_scale,
|
|
@@ -147,9 +133,8 @@ def infer(
|
|
| 147 |
upload_to_ftp(rv_path)
|
| 148 |
else:
|
| 149 |
print('-- generating image --')
|
| 150 |
-
#with torch.no_grad():
|
| 151 |
sd_image = pipe(
|
| 152 |
-
prompt=prompt,
|
| 153 |
prompt_2=enhanced_prompt_2,
|
| 154 |
prompt_3=enhanced_prompt,
|
| 155 |
negative_prompt=negative_prompt_1,
|
|
@@ -159,33 +144,14 @@ def infer(
|
|
| 159 |
num_inference_steps=num_inference_steps,
|
| 160 |
width=width,
|
| 161 |
height=height,
|
| 162 |
-
# latents=None,
|
| 163 |
-
# output_type='latent',
|
| 164 |
generator=generator,
|
| 165 |
max_sequence_length=512
|
| 166 |
).images[0]
|
| 167 |
print('-- got image --')
|
| 168 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 169 |
-
#sd35_image = pipe.vae.decode(sd_image / 0.18215).sample
|
| 170 |
-
# sd35_image = sd35_image.cpu().permute(0, 2, 3, 1).float().detach().numpy()
|
| 171 |
-
# sd35_image = (sd35_image * 255).round().astype("uint8")
|
| 172 |
-
# image_pil = Image.fromarray(sd35_image[0])
|
| 173 |
-
# sd35_path = f"sd35_{seed}.png"
|
| 174 |
-
# image_pil.save(sd35_path,optimize=False,compress_level=0)
|
| 175 |
-
# upload_to_ftp(sd35_path)
|
| 176 |
sd35_path = f"sd35l_{timestamp}.png"
|
| 177 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
| 178 |
upload_to_ftp(sd35_path)
|
| 179 |
-
# Convert the generated image to a tensor
|
| 180 |
-
#generated_image_tensor = torch.tensor([np.array(sd_image).transpose(2, 0, 1)]).to('cuda') / 255.0
|
| 181 |
-
# Encode the generated image into latents
|
| 182 |
-
#with torch.no_grad():
|
| 183 |
-
# generated_latents = pipe.vae.encode(generated_image_tensor.to(torch.bfloat16)).latent_dist.sample().mul_(0.18215)
|
| 184 |
-
#latent_path = f"sd35m_{seed}.pt"
|
| 185 |
-
# Save the latents to a .pt file
|
| 186 |
-
#torch.save(generated_latents, latent_path)
|
| 187 |
-
#upload_to_ftp(latent_path)
|
| 188 |
-
# pipe.unet.to('cpu')
|
| 189 |
upscaler_2.to(torch.device('cuda'))
|
| 190 |
with torch.no_grad():
|
| 191 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
|
@@ -214,8 +180,8 @@ body{
|
|
| 214 |
|
| 215 |
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
| 216 |
with gr.Column(elem_id="col-container"):
|
| 217 |
-
gr.Markdown(" #
|
| 218 |
-
expanded_prompt_output = gr.Textbox(label="Prompt", lines=5)
|
| 219 |
with gr.Row():
|
| 220 |
prompt = gr.Text(
|
| 221 |
label="Prompt",
|
|
@@ -227,7 +193,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
| 227 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
| 228 |
result = gr.Image(label="Result", show_label=False)
|
| 229 |
with gr.Accordion("Advanced Settings", open=True):
|
| 230 |
-
latent_file = gr.File(label="Image File (optional)")
|
| 231 |
image_encoder_path = gr.Dropdown(
|
| 232 |
["google/siglip-so400m-patch14-384", "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"],
|
| 233 |
label="CLIP Model",
|
|
@@ -266,28 +232,28 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
| 266 |
minimum=256,
|
| 267 |
maximum=MAX_IMAGE_SIZE,
|
| 268 |
step=32,
|
| 269 |
-
value=768,
|
| 270 |
)
|
| 271 |
height = gr.Slider(
|
| 272 |
label="Height",
|
| 273 |
minimum=256,
|
| 274 |
maximum=MAX_IMAGE_SIZE,
|
| 275 |
step=32,
|
| 276 |
-
value=768,
|
| 277 |
)
|
| 278 |
guidance_scale = gr.Slider(
|
| 279 |
label="Guidance scale",
|
| 280 |
minimum=0.0,
|
| 281 |
maximum=30.0,
|
| 282 |
step=0.1,
|
| 283 |
-
value=4.2,
|
| 284 |
)
|
| 285 |
num_inference_steps = gr.Slider(
|
| 286 |
label="Number of inference steps",
|
| 287 |
minimum=1,
|
| 288 |
maximum=500,
|
| 289 |
step=1,
|
| 290 |
-
value=
|
| 291 |
)
|
| 292 |
gr.Examples(examples=examples, inputs=[prompt])
|
| 293 |
gr.on(
|
|
@@ -302,7 +268,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
| 302 |
height,
|
| 303 |
guidance_scale,
|
| 304 |
num_inference_steps,
|
| 305 |
-
latent_file,
|
| 306 |
ip_scale,
|
| 307 |
image_encoder_path,
|
| 308 |
],
|
|
|
|
| 38 |
|
| 39 |
hftoken = os.getenv("HF_TOKEN")
|
| 40 |
|
|
|
|
|
|
|
| 41 |
ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin")
|
| 42 |
model_path = 'ford442/stable-diffusion-3.5-large-bf16'
|
| 43 |
|
|
|
|
| 80 |
|
| 81 |
pipe.to(device)
|
| 82 |
|
|
|
|
|
|
|
| 83 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
| 84 |
|
| 85 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
| 95 |
height,
|
| 96 |
guidance_scale,
|
| 97 |
num_inference_steps,
|
| 98 |
+
latent_file,
|
| 99 |
ip_scale,
|
| 100 |
image_encoder_path,
|
| 101 |
progress=gr.Progress(track_tqdm=True),
|
|
|
|
| 106 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
| 107 |
enhanced_prompt = prompt
|
| 108 |
enhanced_prompt_2 = prompt
|
| 109 |
+
if latent_file:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
sd_image_a = Image.open(latent_file.name).convert('RGB')
|
| 111 |
print("-- using image file and loading ip-adapter --")
|
| 112 |
+
sd_image_a.resize((height,width), Image.LANCZOS)
|
| 113 |
pipe.init_ipadapter(
|
| 114 |
ip_adapter_path=ipadapter_path,
|
| 115 |
image_encoder_path=image_encoder_path,
|
| 116 |
nb_token=64,
|
| 117 |
)
|
| 118 |
print('-- generating image --')
|
|
|
|
| 119 |
sd_image = pipe(
|
| 120 |
width=width,
|
| 121 |
height=height,
|
| 122 |
+
prompt=enhanced_prompt,
|
| 123 |
negative_prompt=negative_prompt_1,
|
| 124 |
num_inference_steps=num_inference_steps,
|
| 125 |
guidance_scale=guidance_scale,
|
|
|
|
| 133 |
upload_to_ftp(rv_path)
|
| 134 |
else:
|
| 135 |
print('-- generating image --')
|
|
|
|
| 136 |
sd_image = pipe(
|
| 137 |
+
prompt=prompt,
|
| 138 |
prompt_2=enhanced_prompt_2,
|
| 139 |
prompt_3=enhanced_prompt,
|
| 140 |
negative_prompt=negative_prompt_1,
|
|
|
|
| 144 |
num_inference_steps=num_inference_steps,
|
| 145 |
width=width,
|
| 146 |
height=height,
|
|
|
|
|
|
|
| 147 |
generator=generator,
|
| 148 |
max_sequence_length=512
|
| 149 |
).images[0]
|
| 150 |
print('-- got image --')
|
| 151 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
sd35_path = f"sd35l_{timestamp}.png"
|
| 153 |
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
| 154 |
upload_to_ftp(sd35_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
upscaler_2.to(torch.device('cuda'))
|
| 156 |
with torch.no_grad():
|
| 157 |
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
|
|
|
| 180 |
|
| 181 |
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
| 182 |
with gr.Column(elem_id="col-container"):
|
| 183 |
+
gr.Markdown(" # StableDiffusion 3.5 Large with IP Adapter")
|
| 184 |
+
expanded_prompt_output = gr.Textbox(label="Prompt", lines=5)
|
| 185 |
with gr.Row():
|
| 186 |
prompt = gr.Text(
|
| 187 |
label="Prompt",
|
|
|
|
| 193 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
| 194 |
result = gr.Image(label="Result", show_label=False)
|
| 195 |
with gr.Accordion("Advanced Settings", open=True):
|
| 196 |
+
latent_file = gr.File(label="Image File (optional)")
|
| 197 |
image_encoder_path = gr.Dropdown(
|
| 198 |
["google/siglip-so400m-patch14-384", "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"],
|
| 199 |
label="CLIP Model",
|
|
|
|
| 232 |
minimum=256,
|
| 233 |
maximum=MAX_IMAGE_SIZE,
|
| 234 |
step=32,
|
| 235 |
+
value=768,
|
| 236 |
)
|
| 237 |
height = gr.Slider(
|
| 238 |
label="Height",
|
| 239 |
minimum=256,
|
| 240 |
maximum=MAX_IMAGE_SIZE,
|
| 241 |
step=32,
|
| 242 |
+
value=768,
|
| 243 |
)
|
| 244 |
guidance_scale = gr.Slider(
|
| 245 |
label="Guidance scale",
|
| 246 |
minimum=0.0,
|
| 247 |
maximum=30.0,
|
| 248 |
step=0.1,
|
| 249 |
+
value=4.2,
|
| 250 |
)
|
| 251 |
num_inference_steps = gr.Slider(
|
| 252 |
label="Number of inference steps",
|
| 253 |
minimum=1,
|
| 254 |
maximum=500,
|
| 255 |
step=1,
|
| 256 |
+
value=50,
|
| 257 |
)
|
| 258 |
gr.Examples(examples=examples, inputs=[prompt])
|
| 259 |
gr.on(
|
|
|
|
| 268 |
height,
|
| 269 |
guidance_scale,
|
| 270 |
num_inference_steps,
|
| 271 |
+
latent_file,
|
| 272 |
ip_scale,
|
| 273 |
image_encoder_path,
|
| 274 |
],
|