Spaces:
Runtime error
Runtime error
Ivan Shelonik
commited on
Commit
·
e720316
1
Parent(s):
75241f1
upd: load types
Browse files- api_server.py +13 -5
api_server.py
CHANGED
|
@@ -13,13 +13,16 @@ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
| 13 |
from tensorflow import keras
|
| 14 |
from flask import Flask, jsonify, request
|
| 15 |
|
| 16 |
-
load_type = '
|
| 17 |
"""
|
| 18 |
-
local
|
| 19 |
-
remote_hub_download - /cache error even using TRANSFORMERS_CACHE to
|
| 20 |
-
remote_hub_from_pretrained
|
|
|
|
|
|
|
| 21 |
"""
|
| 22 |
|
|
|
|
| 23 |
REPO_ID = "1vash/mnist_demo_model"
|
| 24 |
|
| 25 |
# Load the saved model into memory
|
|
@@ -29,9 +32,14 @@ elif load_type == 'remote_hub_download':
|
|
| 29 |
from huggingface_hub import hf_hub_download
|
| 30 |
model = keras.models.load_model(hf_hub_download(repo_id=REPO_ID, filename="saved_model.pb"))
|
| 31 |
elif load_type == 'remote_hub_from_pretrained':
|
|
|
|
| 32 |
from huggingface_hub import from_pretrained_keras
|
| 33 |
model = from_pretrained_keras(REPO_ID, cache_dir='./artifacts/')
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
# Initialize the Flask application
|
| 37 |
app = Flask(__name__)
|
|
|
|
| 13 |
from tensorflow import keras
|
| 14 |
from flask import Flask, jsonify, request
|
| 15 |
|
| 16 |
+
load_type = ''
|
| 17 |
"""
|
| 18 |
+
local;
|
| 19 |
+
remote_hub_download; - /cache error even using TRANSFORMERS_CACHE & cache_dir to local folder
|
| 20 |
+
remote_hub_from_pretrained; - /cache error even using TRANSFORMERS_CACHE & cache_dir to local folder
|
| 21 |
+
remote_hub_pipeline; - needs config.json and this is not easy to grasp how to do it with custom models
|
| 22 |
+
https://discuss.huggingface.co/t/how-to-create-a-config-json-after-saving-a-model/10459/4
|
| 23 |
"""
|
| 24 |
|
| 25 |
+
|
| 26 |
REPO_ID = "1vash/mnist_demo_model"
|
| 27 |
|
| 28 |
# Load the saved model into memory
|
|
|
|
| 32 |
from huggingface_hub import hf_hub_download
|
| 33 |
model = keras.models.load_model(hf_hub_download(repo_id=REPO_ID, filename="saved_model.pb"))
|
| 34 |
elif load_type == 'remote_hub_from_pretrained':
|
| 35 |
+
# https://huggingface.co/docs/hub/keras
|
| 36 |
from huggingface_hub import from_pretrained_keras
|
| 37 |
model = from_pretrained_keras(REPO_ID, cache_dir='./artifacts/')
|
| 38 |
+
elif load_type == 'remote_hub_pipeline':
|
| 39 |
+
from transformers import pipeline
|
| 40 |
+
classifier = pipeline("image-classification", model=REPO_ID)
|
| 41 |
+
else:
|
| 42 |
+
pass
|
| 43 |
|
| 44 |
# Initialize the Flask application
|
| 45 |
app = Flask(__name__)
|