File size: 16,428 Bytes
3bfd811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# RAM++: Robust Representation Learning via Adaptive Mask for All-in-One Image Restoration
# Zilong Zhang, Chujie Qin, Chunle Guo, Yong Zhang, Chao Xue, Ming-Ming Cheng and Chongyi Li
# https://arxiv.org/abs/2509.12039

import torch
import torch.nn as nn
import torch.nn.functional as F
import numbers

from einops import rearrange



def to_3d(x):
    return rearrange(x, 'b c h w -> b (h w) c')

def to_4d(x,h,w):
    return rearrange(x, 'b (h w) c -> b c h w',h=h,w=w)

class BiasFree_LayerNorm(nn.Module):
    def __init__(self, normalized_shape):
        super(BiasFree_LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = (normalized_shape,)
        normalized_shape = torch.Size(normalized_shape)

        assert len(normalized_shape) == 1

        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.normalized_shape = normalized_shape

    def forward(self, x):
        sigma = x.var(-1, keepdim=True, unbiased=False)
        return x / torch.sqrt(sigma+1e-5) * self.weight

class WithBias_LayerNorm(nn.Module):
    def __init__(self, normalized_shape):
        super(WithBias_LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = (normalized_shape,)
        normalized_shape = torch.Size(normalized_shape)

        assert len(normalized_shape) == 1

        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.normalized_shape = normalized_shape

    def forward(self, x):
        mu = x.mean(-1, keepdim=True)
        sigma = x.var(-1, keepdim=True, unbiased=False)
        return (x - mu) / torch.sqrt(sigma+1e-5) * self.weight + self.bias


class LayerNorm(nn.Module):
    def __init__(self, dim, LayerNorm_type):
        super(LayerNorm, self).__init__()
        if LayerNorm_type =='BiasFree':
            self.body = BiasFree_LayerNorm(dim)
        else:
            self.body = WithBias_LayerNorm(dim)

    def forward(self, x):
        h, w = x.shape[-2:]
        return to_4d(self.body(to_3d(x)), h, w)



##########################################################################
## Gated-Dconv Feed-Forward Network (GDFN)
class FeedForward(nn.Module):
    def __init__(self, dim, ffn_expansion_factor, bias,finetune_type=None):
        super(FeedForward, self).__init__()

        hidden_features = int(dim*ffn_expansion_factor)

        self.project_in = nn.Conv2d(dim, hidden_features*2, kernel_size=1, bias=bias)

        self.dwconv = nn.Conv2d(hidden_features*2, hidden_features*2, kernel_size=3, stride=1, padding=1, groups=hidden_features*2, bias=bias)

        self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias)
                
    def forward(self, x):
        x = self.project_in(x)
        x1, x2 = self.dwconv(x).chunk(2, dim=1)
        x = F.gelu(x1) * x2
        x = self.project_out(x)
        
        return x



##########################################################################
## Multi-DConv Head Transposed Self-Attention (MDTA)
class Attention(nn.Module):
    def __init__(self, dim, num_heads, bias):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))

        self.qkv = nn.Conv2d(dim, dim*3, kernel_size=1, bias=bias)
        self.qkv_dwconv = nn.Conv2d(dim*3, dim*3, kernel_size=3, stride=1, padding=1, groups=dim*3, bias=bias)
        self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
        

    def forward(self, x):
        b,c,h,w = x.shape

        qkv = self.qkv_dwconv(self.qkv(x))
        q,k,v = qkv.chunk(3, dim=1)   
        
        q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
        k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
        v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads)

        q = torch.nn.functional.normalize(q, dim=-1)
        k = torch.nn.functional.normalize(k, dim=-1)

        attn = (q @ k.transpose(-2, -1)) * self.temperature
        attn = attn.softmax(dim=-1)

        out = (attn @ v)
        
        out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w)

        out = self.project_out(out)
        return out



class resblock(nn.Module):
    def __init__(self, dim):

        super(resblock, self).__init__()
        # self.norm = LayerNorm(dim, LayerNorm_type='BiasFree')

        self.body = nn.Sequential(nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, bias=False),
                                  nn.PReLU(dim),
                                  nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, bias=False))

    def forward(self, x):
        res = self.body((x))
        res += x
        return res


##########################################################################
## Resizing modules
class Downsample(nn.Module):
    def __init__(self, n_feat):
        super(Downsample, self).__init__()

        self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat//2, kernel_size=3, stride=1, padding=1, bias=False),
                                  nn.PixelUnshuffle(2))

    def forward(self, x):
        return self.body(x)

class Upsample(nn.Module):
    def __init__(self, n_feat):
        super(Upsample, self).__init__()

        self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat*2, kernel_size=3, stride=1, padding=1, bias=False),
                                  nn.PixelShuffle(2))

    def forward(self, x):
        return self.body(x)


##########################################################################
## Transformer Block
class TransformerBlock(nn.Module):
    def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type,finetune_type=None):
        super(TransformerBlock, self).__init__()

        self.norm1 = LayerNorm(dim, LayerNorm_type)
        self.attn = Attention(dim, num_heads, bias)
        self.norm2 = LayerNorm(dim, LayerNorm_type)
        self.ffn = FeedForward(dim, ffn_expansion_factor, bias,finetune_type)

    def forward(self, x):
        x = x + self.attn(self.norm1(x))
        x = x + self.ffn(self.norm2(x))

        return x



##########################################################################
## Overlapped image patch embedding with 3x3 Conv
class OverlapPatchEmbed(nn.Module):
    def __init__(self, in_c=3, embed_dim=48, bias=False):
        super(OverlapPatchEmbed, self).__init__()

        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=3, stride=1, padding=1, bias=bias)

    def forward(self, x):
        x = self.proj(x)

        return x

class TemperatureSoftmax(nn.Module):
    def __init__(self, temperature):
        super().__init__()
        self.temperature = temperature

    def forward(self, x):
        return F.softmax(x / torch.clamp(self.temperature, min=1e-8), dim=1)

class DinoFeatureFusion(nn.Module):
    def __init__(self, dino_dim=1536):
        super(DinoFeatureFusion, self).__init__()
        
        self.global_pool = nn.AdaptiveAvgPool2d(1)
        self.temperature = nn.Parameter(torch.ones(1) * 1.0)
        
        self.gate_network = nn.Sequential(
            nn.Linear(dino_dim * 2, dino_dim),
            nn.PReLU(dino_dim),
            nn.Linear(dino_dim, 512),
            nn.PReLU(512),
            nn.Linear(512, 2),
            TemperatureSoftmax(self.temperature) 
        )

    def forward(self, dino_feat1, dino_feat2):
        pooled_feat1 = self.global_pool(dino_feat1).squeeze(-1).squeeze(-1) 
        pooled_feat2 = self.global_pool(dino_feat2).squeeze(-1).squeeze(-1) 
        pooled_features = torch.cat([pooled_feat1, pooled_feat2], dim=1)  

        weights = self.gate_network(pooled_features)  
        weighted_feat1 = dino_feat1 * weights[:, 0:1].view(-1, 1, 1, 1)
        weighted_feat2 = dino_feat2 * weights[:, 1:2].view(-1, 1, 1, 1)

        fused_feat = weighted_feat1 + weighted_feat2  
        return fused_feat
        
        




class DRAdaptation(nn.Module):
    def __init__(self, dino_dim=1536, restore_dim=48, scale_factor=14, size=128):      
        super(DRAdaptation, self).__init__()
        self.size = size  
        self.restore_dim = restore_dim
        self.adaptation = nn.Sequential(
            nn.Conv2d(dino_dim, restore_dim*16, kernel_size=3, padding=1), #768
            nn.PReLU(restore_dim*16),
            nn.Conv2d(restore_dim*16, restore_dim*8, kernel_size=1),#384
        )

    def forward(self, dino_feat, restore_feat):
        B, C, H, W = restore_feat.shape
        
        adapted_dino = self.adaptation(dino_feat)  

        return adapted_dino



##########################################################################
##---------- D-R Fusion -----------------------
class DinoRestoreFeatureFusion(nn.Module):
    def __init__(self, dim, num_heads, bias):
        super(DinoRestoreFeatureFusion, self).__init__()
        self.reduce_chan = nn.Conv2d(dim*2, dim, kernel_size=1, bias=bias)
    def forward(self, dino_feat, restore_feat):
        x_fusion = self.reduce_chan(torch.cat([dino_feat, restore_feat], dim=1))
        res = x_fusion + restore_feat
        return res
        
    
##---------- restormerRFR -----------------------
class RestormerRFR(nn.Module):
    def __init__(self, 
        inp_channels=3, 
        out_channels=3, 
        dim = 48,
        num_blocks = [4,6,6,8], 
        num_refinement_blocks = 4,
        heads = [1,2,4,8],
        ffn_expansion_factor = 2.66,
        bias = False,
        LayerNorm_type = 'WithBias',   
        finetune_type = None,
        img_size = 128
    ):

        super(RestormerRFR, self).__init__()
        
        
        self.patch_embed = OverlapPatchEmbed(inp_channels, dim)
        
        self.mask_token = torch.zeros(1, 3, img_size, img_size)
        
        self.dr_adaptation1 = DRAdaptation(dino_dim=1536, restore_dim=48, scale_factor=14, size=128)
        self.dr_adaptation2 = DRAdaptation(dino_dim=1536, restore_dim=48, scale_factor=14, size=128)
        self.dr_adaptation3 = DRAdaptation(dino_dim=1536, restore_dim=48, scale_factor=14, size=128)
        self.dr_fusion1 = DinoRestoreFeatureFusion(dim=int(dim*2**3), num_heads=heads[3], bias=bias) 
        self.dr_fusion2 = DinoRestoreFeatureFusion(dim=int(dim*2**2), num_heads=heads[2], bias=bias)
        self.dr_fusion3 = DinoRestoreFeatureFusion(dim=int(dim*2**1), num_heads=heads[1], bias=bias)
        self.up_4_3_dino1 = Upsample(int(dim*2**3))
        self.up_4_3_dino2 = Upsample(int(dim*2**3))
        self.up_3_2_dino = Upsample(int(dim*2**2))
        self.dino_fusion_shallow = DinoFeatureFusion(dino_dim=1536)
        self.dino_fusion_mid = DinoFeatureFusion(dino_dim=1536)
        self.dino_fusion_deep = DinoFeatureFusion(dino_dim=1536)



        self.encoder_level1 = nn.Sequential(*[TransformerBlock(dim=dim, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type,finetune_type=finetune_type if i==num_blocks[0]-1 else None) for i in range(num_blocks[0])])
        self.down1_2 = Downsample(dim) 
        self.encoder_level2 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type,finetune_type=finetune_type if i==num_blocks[1]-1 else None) for i in range(num_blocks[1])])       
        self.down2_3 = Downsample(int(dim*2**1)) 
        self.encoder_level3 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type,finetune_type=finetune_type if i==num_blocks[2]-1 else None) for i in range(num_blocks[2])])
        self.down3_4 = Downsample(int(dim*2**2)) 
        self.latent = nn.Sequential(*[TransformerBlock(dim=int(dim*2**3), num_heads=heads[3], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type,finetune_type=finetune_type if i==num_blocks[3]-1 else None) for i in range(num_blocks[3])])
        
        self.up4_3 = Upsample(int(dim*2**3)) 
        self.reduce_chan_level3 = nn.Conv2d(int(dim*2**3), int(dim*2**2), kernel_size=1, bias=bias)
        self.decoder_level3 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type,finetune_type=finetune_type if i==num_blocks[2]-1 else None) for i in range(num_blocks[2])])


        self.up3_2 = Upsample(int(dim*2**2))
        self.reduce_chan_level2 = nn.Conv2d(int(dim*2**2), int(dim*2**1), kernel_size=1, bias=bias)
        self.decoder_level2 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type,finetune_type=finetune_type if i==num_blocks[1]-1 else None) for i in range(num_blocks[1])])
        
        self.up2_1 = Upsample(int(dim*2**1)) 
        self.decoder_level1 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type,finetune_type=finetune_type if i==num_blocks[0]-1 else None) for i in range(num_blocks[0])])
        self.refinement = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type,finetune_type=finetune_type if i==num_refinement_blocks-1 else None) for i in range(num_refinement_blocks)])
        self.output = nn.Conv2d(int(dim*2**1), out_channels, kernel_size=3, stride=1, padding=1, bias=bias)

    
    def check_image_size(self, x):
        _, _, h, w = x.size()
        pad_size = 16
        mod_pad_h = (pad_size - h % pad_size) % pad_size
        mod_pad_w = (pad_size - w % pad_size) % pad_size
        x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
        return x
    def forward(self, inp_img, dino_features =None ):
        b,c,h,w = inp_img.shape

        shallow_feat1, mid_feat1, deep_feat1, shallow_feat2, mid_feat2, deep_feat2 = dino_features.values()
        inp_img = self.check_image_size(inp_img)

        inp_enc_level1 = self.patch_embed(inp_img)

        out_enc_level1 = self.encoder_level1(inp_enc_level1)
        
        inp_enc_level2 = self.down1_2(out_enc_level1)

        out_enc_level2 = self.encoder_level2(inp_enc_level2)

        inp_enc_level3 = self.down2_3(out_enc_level2)

        out_enc_level3 = self.encoder_level3(inp_enc_level3) 

        inp_enc_level4 = self.down3_4(out_enc_level3)        

        latent = self.latent(inp_enc_level4)  
        

       
        
        shallow_feat = self.dino_fusion_shallow(shallow_feat1, shallow_feat2)
        mid_feat = self.dino_fusion_mid(mid_feat1, mid_feat2)
        deep_feat = self.dino_fusion_deep(deep_feat1, deep_feat2)

        shallow_feat = self.dr_adaptation1(shallow_feat, latent) 
        mid_feat = self.dr_adaptation2(mid_feat, latent)
        deep_feat = self.dr_adaptation3(deep_feat, latent)

        latent = self.dr_fusion1(dino_feat=deep_feat, restore_feat=latent) 
        shallow_feat = self.up_4_3_dino1(shallow_feat)
        mid_feat = self.up_4_3_dino2(mid_feat)

        inp_dec_level3 = self.up4_3(latent) 
        inp_dec_level3 = torch.cat([inp_dec_level3, out_enc_level3], 1)
        inp_dec_level3 = self.reduce_chan_level3(inp_dec_level3)

        out_dec_level3 = self.decoder_level3(inp_dec_level3)

        out_dec_level3 = self.dr_fusion2(dino_feat=mid_feat, restore_feat=out_dec_level3) 
        shallow_feat = self.up_3_2_dino(shallow_feat)
        inp_dec_level2 = self.up3_2(out_dec_level3)
        
        inp_dec_level2 = torch.cat([inp_dec_level2, out_enc_level2], 1)
        inp_dec_level2 = self.reduce_chan_level2(inp_dec_level2)

        out_dec_level2 = self.decoder_level2(inp_dec_level2)  

        out_dec_level2 = self.dr_fusion3(dino_feat=shallow_feat, restore_feat=out_dec_level2) 


        inp_dec_level1 = self.up2_1(out_dec_level2)
        inp_dec_level1 = torch.cat([inp_dec_level1, out_enc_level1], 1)
        
        out_dec_level1 = self.decoder_level1(inp_dec_level1)

        out_dec_level1 = self.refinement(out_dec_level1)

        out_dec_level1 = self.output(out_dec_level1)


        return out_dec_level1[:,:,:h,:w]