Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
from PIL import Image
|
| 4 |
-
|
| 5 |
|
| 6 |
os.system(
|
| 7 |
'wget https://github.com/TentativeGitHub/SRMNet/releases/download/0.0/AWGN_denoising_SRMNet.pth -P experiments/pretrained_models')
|
|
@@ -13,17 +13,17 @@ def inference(img):
|
|
| 13 |
wpercent = (basewidth / float(img.size[0]))
|
| 14 |
hsize = int((float(img.size[1]) * float(wpercent)))
|
| 15 |
img = img.resize((basewidth, hsize), Image.ANTIALIAS)
|
| 16 |
-
img.save("test/1.
|
| 17 |
os.system(
|
| 18 |
-
'python
|
| 19 |
-
return '
|
| 20 |
|
| 21 |
|
| 22 |
title = "Selective Residual M-Net (SRMNet)"
|
| 23 |
-
description = "Gradio demo for
|
| 24 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.10257' target='_blank'>SwinIR: Image Restoration Using Swin Transformer</a> | <a href='https://github.com/JingyunLiang/SwinIR' target='_blank'>Github Repo</a></p>"
|
| 25 |
|
| 26 |
-
examples = [['
|
| 27 |
gr.Interface(
|
| 28 |
inference,
|
| 29 |
[gr.inputs.Image(type="pil", label="Input")],
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
|
| 6 |
os.system(
|
| 7 |
'wget https://github.com/TentativeGitHub/SRMNet/releases/download/0.0/AWGN_denoising_SRMNet.pth -P experiments/pretrained_models')
|
|
|
|
| 13 |
wpercent = (basewidth / float(img.size[0]))
|
| 14 |
hsize = int((float(img.size[1]) * float(wpercent)))
|
| 15 |
img = img.resize((basewidth, hsize), Image.ANTIALIAS)
|
| 16 |
+
img.save("test/1.png", "PNG")
|
| 17 |
os.system(
|
| 18 |
+
'python main_test_SRMNet.py --weights experiments/pretrained_models/AWGN_denoising_SRMNet.pth')
|
| 19 |
+
return 'result/1.png'
|
| 20 |
|
| 21 |
|
| 22 |
title = "Selective Residual M-Net (SRMNet)"
|
| 23 |
+
description = "Gradio demo for SwinIR. SwinIR achieves state-of-the-art performance on six tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. See the paper and project page for detailed results below. Here, we provide a demo for real-world image SR.To use it, simply upload your image, or click one of the examples to load them."
|
| 24 |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.10257' target='_blank'>SwinIR: Image Restoration Using Swin Transformer</a> | <a href='https://github.com/JingyunLiang/SwinIR' target='_blank'>Github Repo</a></p>"
|
| 25 |
|
| 26 |
+
examples = [['Noise.png']]
|
| 27 |
gr.Interface(
|
| 28 |
inference,
|
| 29 |
[gr.inputs.Image(type="pil", label="Input")],
|