Spaces:
Runtime error
Runtime error
Create predict.py
Browse files- predict.py +83 -0
predict.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cog
|
| 2 |
+
import tempfile
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import argparse
|
| 5 |
+
import shutil
|
| 6 |
+
import os
|
| 7 |
+
import glob
|
| 8 |
+
import torch
|
| 9 |
+
from skimage import img_as_ubyte
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from model.SRMNet import SRMNet
|
| 12 |
+
from main_test_SRMNet import save_img, setup
|
| 13 |
+
import torchvision.transforms.functional as TF
|
| 14 |
+
import torch.nn.functional as F
|
| 15 |
+
|
| 16 |
+
class Predictor(cog.Predictor):
|
| 17 |
+
def setup(self):
|
| 18 |
+
model_dir = 'experiments/pretrained_models/AWGN_denoising_SRMNet.pth'
|
| 19 |
+
|
| 20 |
+
parser = argparse.ArgumentParser(description='Demo Image Denoising')
|
| 21 |
+
parser.add_argument('--input_dir', default='./test/', type=str, help='Input images')
|
| 22 |
+
parser.add_argument('--result_dir', default='./result/', type=str, help='Directory for results')
|
| 23 |
+
parser.add_argument('--weights',
|
| 24 |
+
default='./checkpoints/SRMNet_real_denoise/models/model_bestPSNR.pth', type=str,
|
| 25 |
+
help='Path to weights')
|
| 26 |
+
|
| 27 |
+
self.args = parser.parse_args()
|
| 28 |
+
|
| 29 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 30 |
+
|
| 31 |
+
@cog.input("image", type=Path, help="input image")
|
| 32 |
+
|
| 33 |
+
def predict(self, image):
|
| 34 |
+
|
| 35 |
+
# set input folder
|
| 36 |
+
input_dir = 'input_cog_temp'
|
| 37 |
+
os.makedirs(input_dir, exist_ok=True)
|
| 38 |
+
input_path = os.path.join(input_dir, os.path.basename(image))
|
| 39 |
+
shutil.copy(str(image), input_path)
|
| 40 |
+
|
| 41 |
+
# Load corresponding models architecture and weights
|
| 42 |
+
model = SRMNet()
|
| 43 |
+
model.eval()
|
| 44 |
+
model = model.to(self.device)
|
| 45 |
+
|
| 46 |
+
folder, save_dir = setup(self.args)
|
| 47 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 48 |
+
|
| 49 |
+
out_path = Path(tempfile.mkdtemp()) / "out.png"
|
| 50 |
+
mul = 16
|
| 51 |
+
for file_ in sorted(glob.glob(os.path.join(folder, '*.PNG'))):
|
| 52 |
+
img = Image.open(file_).convert('RGB')
|
| 53 |
+
input_ = TF.to_tensor(img).unsqueeze(0).cuda()
|
| 54 |
+
|
| 55 |
+
# Pad the input if not_multiple_of 8
|
| 56 |
+
h, w = input_.shape[2], input_.shape[3]
|
| 57 |
+
H, W = ((h + mul) // mul) * mul, ((w + mul) // mul) * mul
|
| 58 |
+
padh = H - h if h % mul != 0 else 0
|
| 59 |
+
padw = W - w if w % mul != 0 else 0
|
| 60 |
+
input_ = F.pad(input_, (0, padw, 0, padh), 'reflect')
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
restored = model(input_)
|
| 63 |
+
|
| 64 |
+
restored = torch.clamp(restored, 0, 1)
|
| 65 |
+
restored = restored[:, :, :h, :w]
|
| 66 |
+
restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy()
|
| 67 |
+
restored = img_as_ubyte(restored[0])
|
| 68 |
+
|
| 69 |
+
save_img(str(out_path), restored)
|
| 70 |
+
clean_folder(input_dir)
|
| 71 |
+
return out_path
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def clean_folder(folder):
|
| 75 |
+
for filename in os.listdir(folder):
|
| 76 |
+
file_path = os.path.join(folder, filename)
|
| 77 |
+
try:
|
| 78 |
+
if os.path.isfile(file_path) or os.path.islink(file_path):
|
| 79 |
+
os.unlink(file_path)
|
| 80 |
+
elif os.path.isdir(file_path):
|
| 81 |
+
shutil.rmtree(file_path)
|
| 82 |
+
except Exception as e:
|
| 83 |
+
print('Failed to delete %s. Reason: %s' % (file_path, e))
|