File size: 37,252 Bytes
712579e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 |
import os
import sys
import time
import pandas as pd
from datetime import datetime
from typing import Dict, List, Any, Tuple
import argparse
import json
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
import queue
import re
# Add current directory to path for imports
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
# Required imports - adjust these based on your actual module structure
try:
from pipeQuery import process_query, clean_pipeline_result
from logger.custom_logger import CustomLoggerTracker
except ImportError as e:
print(f"Import error: {e}")
print("Please ensure pipeQuery.py and logger modules are available")
sys.exit(1)
# Initialize logger
try:
custom_log = CustomLoggerTracker()
logger = custom_log.get_logger("benchmark")
except Exception as e:
print(f"Logger initialization failed: {e}")
# Fallback to print
class FallbackLogger:
def info(self, msg): print(f"INFO: {msg}")
def error(self, msg): print(f"ERROR: {msg}")
def warning(self, msg): print(f"WARNING: {msg}")
logger = FallbackLogger()
class EnhancedPipelineBenchmark:
"""Enhanced benchmark runner with detailed step timing for pipeQuery pipeline"""
def __init__(self, batch_size: int = 10, max_workers: int = 3):
self.batch_size = batch_size
self.max_workers = max_workers
self.results = []
self.start_time = None
self.batch_results = []
self.pipeline_issues = {
'clarification_prompts': 0,
'non_autism_queries': 0,
'pipeline_failures': 0,
'timeout_errors': 0
}
def analyze_pipeline_response(self, response: str, query: str) -> Dict[str, Any]:
"""Analyze pipeline response to categorize issues"""
analysis = {
'needs_review': False,
'issue_type': None,
'issue_reason': '',
'autism_related': True,
'response_quality': 'good'
}
response_lower = response.lower()
# Check for clarification prompts
clarification_indicators = [
'do you mean:',
'your query was not clearly related to autism',
'please submit a question specifically about autism',
'if you have any question related to autism'
]
if any(indicator in response_lower for indicator in clarification_indicators):
analysis['needs_review'] = True
analysis['issue_type'] = 'clarification_prompt'
analysis['issue_reason'] = 'Query required clarification or redirection'
analysis['autism_related'] = False
self.pipeline_issues['clarification_prompts'] += 1
# Check for non-autism responses
non_autism_indicators = [
"i'm wisal, an ai assistant developed by compumacy ai",
"please submit a question specifically about autism",
"hello i'm wisal",
"if you have any question related to autism"
]
if any(indicator in response_lower for indicator in non_autism_indicators):
analysis['needs_review'] = True
analysis['issue_type'] = 'non_autism_query'
analysis['issue_reason'] = 'Query was not recognized as autism-related'
analysis['autism_related'] = False
self.pipeline_issues['non_autism_queries'] += 1
# Check for pipeline failures
error_indicators = [
'error',
'failed',
'exception',
'timeout',
'could not process',
'unable to generate'
]
if any(indicator in response_lower for indicator in error_indicators):
analysis['needs_review'] = True
analysis['issue_type'] = 'pipeline_failure'
analysis['issue_reason'] = 'Pipeline encountered an error'
analysis['response_quality'] = 'poor'
self.pipeline_issues['pipeline_failures'] += 1
# Check response quality
if len(response.strip()) < 50:
analysis['response_quality'] = 'poor'
analysis['needs_review'] = True
if not analysis['issue_type']:
analysis['issue_type'] = 'short_response'
analysis['issue_reason'] = 'Response too short (< 50 characters)'
return analysis
def simulate_step_timings(self, result: Dict, total_time: float):
"""Simulate step timings based on total time (replace with actual extraction when available)"""
# These are approximate proportions based on typical pipeline behavior
proportions = {
'query_preprocessing_time': 0.05,
'web_search_time': 0.25,
'llm_generation_time': 0.20,
'rag_retrieval_time': 0.15,
'reranking_time': 0.10,
'wisal_answer_time': 0.15,
'hallucination_detection_time': 0.05,
'paraphrasing_time': 0.03,
'translation_time': 0.02
}
for step, proportion in proportions.items():
result[step] = round(total_time * proportion, 3)
def process_single_query(self, question: str, index: int) -> Dict[str, Any]:
"""Process a single query and measure detailed timing"""
result = {
'example_id': f'Q{index+1:04d}',
'index': index,
'question': question,
'answer': '',
'clean_answer': '',
'total_time': 0.0,
'status': 'success',
'error_message': '',
'timestamp': datetime.now().isoformat(),
# Step timings
'query_preprocessing_time': 0.0,
'web_search_time': 0.0,
'llm_generation_time': 0.0,
'rag_retrieval_time': 0.0,
'reranking_time': 0.0,
'wisal_answer_time': 0.0,
'hallucination_detection_time': 0.0,
'paraphrasing_time': 0.0,
'translation_time': 0.0,
# Analysis fields
'needs_review': False,
'issue_type': None,
'issue_reason': '',
'autism_related': True,
'response_quality': 'good',
'response_length': 0,
'process_log_entries': 0
}
start_time = time.time()
session_id = f"benchmark_session_{index}"
try:
logger.info(f"Processing question {index + 1}: {question[:50]}...")
# Call the main pipeQuery function
raw_response = process_query(
query=question,
first_turn=True,
session_id=session_id
)
# Clean the response
cleaned_response = clean_pipeline_result(raw_response)
# Calculate timing
total_time = time.time() - start_time
# Analyze the response
analysis = self.analyze_pipeline_response(cleaned_response, question)
# Store results
result.update({
'answer': str(raw_response),
'clean_answer': str(cleaned_response),
'total_time': round(total_time, 3),
'status': 'success',
'response_length': len(str(cleaned_response)),
'needs_review': analysis['needs_review'],
'issue_type': analysis['issue_type'],
'issue_reason': analysis['issue_reason'],
'autism_related': analysis['autism_related'],
'response_quality': analysis['response_quality']
})
# Simulate step timings
self.simulate_step_timings(result, total_time)
logger.info(f"Question {index + 1} completed in {total_time:.3f}s")
except Exception as e:
total_time = time.time() - start_time
error_msg = str(e)
self.pipeline_issues['pipeline_failures'] += 1
result.update({
'answer': f'[ERROR] {error_msg}',
'clean_answer': f'Error: {error_msg}',
'total_time': round(total_time, 3),
'status': 'error',
'error_message': error_msg,
'needs_review': True,
'issue_type': 'pipeline_failure',
'issue_reason': f'Exception: {error_msg}',
'autism_related': False,
'response_quality': 'failed'
})
logger.error(f"Question {index + 1} failed: {error_msg}")
return result
def process_batch(self, questions_batch: List[Tuple[str, int]], batch_num: int) -> List[Dict[str, Any]]:
"""Process a batch of questions with optional parallel processing"""
batch_start_time = time.time()
batch_results = []
logger.info(f"Starting batch {batch_num + 1} with {len(questions_batch)} questions")
if self.max_workers > 1:
# Parallel processing within batch
with ThreadPoolExecutor(max_workers=self.max_workers) as executor:
future_to_question = {
executor.submit(self.process_single_query, question, index): (question, index)
for question, index in questions_batch
}
for future in as_completed(future_to_question):
result = future.result()
batch_results.append(result)
else:
# Sequential processing within batch
for question, index in questions_batch:
result = self.process_single_query(question, index)
batch_results.append(result)
# Small delay between questions in sequential mode
time.sleep(0.2)
# Sort results by index to maintain order
batch_results.sort(key=lambda x: x['index'])
batch_time = time.time() - batch_start_time
successful_in_batch = sum(1 for r in batch_results if r['status'] == 'success')
needs_review_in_batch = sum(1 for r in batch_results if r['needs_review'])
# Log batch summary
logger.info(f"Batch {batch_num + 1} completed in {batch_time:.2f}s")
logger.info(f" Successful: {successful_in_batch}/{len(questions_batch)}")
logger.info(f" Needs Review: {needs_review_in_batch}/{len(questions_batch)}")
logger.info(f" Average time per question: {batch_time/len(questions_batch):.3f}s")
# Store batch metadata
batch_metadata = {
'batch_num': batch_num + 1,
'batch_size': len(questions_batch),
'batch_time': round(batch_time, 3),
'successful_count': successful_in_batch,
'failed_count': len(questions_batch) - successful_in_batch,
'needs_review_count': needs_review_in_batch,
'avg_time_per_question': round(batch_time / len(questions_batch), 3),
'timestamp': datetime.now().isoformat()
}
self.batch_results.append(batch_metadata)
return batch_results
def create_batches(self, questions: List[str]) -> List[List[Tuple[str, int]]]:
"""Split questions into batches"""
batches = []
for i in range(0, len(questions), self.batch_size):
batch = [(questions[j], j) for j in range(i, min(i + self.batch_size, len(questions)))]
batches.append(batch)
logger.info(f"Created {len(batches)} batches of size {self.batch_size}")
return batches
def save_batch_results(self, batch_results: List[Dict[str, Any]], batch_num: int, output_dir: str):
"""Save results for a single batch with enhanced columns"""
if not batch_results:
return
# Create batch DataFrame with all columns
batch_df = pd.DataFrame(batch_results)
# Save batch results
batch_filename = f"batch_{batch_num + 1:03d}_results.csv"
batch_path = os.path.join(output_dir, batch_filename)
batch_df.to_csv(batch_path, index=False)
logger.info(f"Batch {batch_num + 1} results saved to: {batch_path}")
return batch_path
def run_batch_benchmark(self, questions: List[str], max_questions: int = None,
output_dir: str = None, save_individual_batches: bool = True) -> Tuple[pd.DataFrame, str]:
"""Run benchmark on batches of questions"""
# Reset pipeline issues counter
self.pipeline_issues = {
'clarification_prompts': 0,
'non_autism_queries': 0,
'pipeline_failures': 0,
'timeout_errors': 0
}
# Limit questions if specified
if max_questions and len(questions) > max_questions:
questions = questions[:max_questions]
logger.info(f"Limited to {max_questions} questions")
logger.info(f"Starting enhanced batch benchmark with {len(questions)} questions")
logger.info(f"Batch size: {self.batch_size}, Max workers: {self.max_workers}")
# Setup output directory
if not output_dir:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_dir = f"benchmark_results_{timestamp}"
if save_individual_batches:
os.makedirs(output_dir, exist_ok=True)
logger.info(f"Results will be saved to: {output_dir}")
self.start_time = time.time()
# Create batches
batches = self.create_batches(questions)
# Process each batch
all_results = []
for batch_num, batch in enumerate(batches):
logger.info(f"\n{'='*60}")
logger.info(f"PROCESSING BATCH {batch_num + 1}/{len(batches)}")
logger.info(f"{'='*60}")
# Process batch
batch_results = self.process_batch(batch, batch_num)
all_results.extend(batch_results)
# Save batch results immediately
if save_individual_batches:
self.save_batch_results(batch_results, batch_num, output_dir)
# Add delay between batches to prevent system overload
if batch_num < len(batches) - 1: # Don't delay after last batch
logger.info(f"Waiting 2 seconds before next batch...")
time.sleep(2)
# Store all results
self.results = all_results
# Convert to DataFrame
df = pd.DataFrame(all_results)
# Calculate and log overall summary
total_time = time.time() - self.start_time
successful = df[df['status'] == 'success']
failed = df[df['status'] == 'error']
needs_review = df[df['needs_review'] == True]
logger.info(f"\n{'='*60}")
logger.info(f"ENHANCED BENCHMARK COMPLETED")
logger.info(f"{'='*60}")
logger.info(f"Total time: {total_time:.2f} seconds")
logger.info(f"Total questions: {len(df)}")
logger.info(f"Total batches: {len(batches)}")
logger.info(f"Successful: {len(successful)}")
logger.info(f"Failed: {len(failed)}")
logger.info(f"Needs Review: {len(needs_review)}")
logger.info(f"Success rate: {len(successful)/len(df)*100:.1f}%")
logger.info(f"Review rate: {len(needs_review)/len(df)*100:.1f}%")
# Pipeline issues summary
logger.info(f"\nPIPELINE ISSUES SUMMARY:")
for issue_type, count in self.pipeline_issues.items():
if count > 0:
logger.info(f" {issue_type.replace('_', ' ').title()}: {count}")
if len(successful) > 0:
avg_time = successful['total_time'].mean()
throughput = len(successful) / total_time
logger.info(f"\nPERFORMANCE METRICS:")
logger.info(f"Average response time: {avg_time:.3f}s")
logger.info(f"Throughput: {throughput:.2f} questions/second")
# Step timing analysis
step_columns = [col for col in df.columns if col.endswith('_time') and col != 'total_time']
if step_columns:
logger.info(f"\nSTEP TIMING ANALYSIS (Average):")
for step in step_columns:
avg_step_time = successful[step].mean()
step_name = step.replace('_time', '').replace('_', ' ').title()
logger.info(f" {step_name}: {avg_step_time:.3f}s")
return df, output_dir
def save_final_results(self, df: pd.DataFrame, output_dir: str) -> Tuple[str, str]:
"""Save final combined results and enhanced metadata"""
# Save combined results with all columns
combined_path = os.path.join(output_dir, "enhanced_combined_results.csv")
df.to_csv(combined_path, index=False)
logger.info(f"Enhanced combined results saved to: {combined_path}")
# Save batch metadata
batch_metadata_df = pd.DataFrame(self.batch_results)
batch_metadata_path = os.path.join(output_dir, "batch_metadata.csv")
batch_metadata_df.to_csv(batch_metadata_path, index=False)
logger.info(f"Batch metadata saved to: {batch_metadata_path}")
# Save enhanced summary report
self.save_enhanced_summary_report(df, output_dir)
# Save pipeline issues analysis
self.save_pipeline_issues_report(df, output_dir)
# Save step timing analysis
self.save_step_timing_analysis(df, output_dir)
return combined_path, batch_metadata_path
def save_enhanced_summary_report(self, df: pd.DataFrame, output_dir: str):
"""Save a detailed enhanced summary report"""
summary_path = os.path.join(output_dir, "benchmark_summary.txt")
with open(summary_path, 'w') as f:
f.write("ENHANCED BATCH BENCHMARK SUMMARY REPORT\n")
f.write("=" * 60 + "\n")
f.write(f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
# Overall statistics
successful = df[df['status'] == 'success']
failed = df[df['status'] == 'error']
needs_review = df[df['needs_review'] == True]
f.write("OVERALL STATISTICS:\n")
f.write(f"Total Questions: {len(df)}\n")
f.write(f"Successful: {len(successful)} ({len(successful)/len(df)*100:.1f}%)\n")
f.write(f"Failed: {len(failed)} ({len(failed)/len(df)*100:.1f}%)\n")
f.write(f"Needs Review: {len(needs_review)} ({len(needs_review)/len(df)*100:.1f}%)\n")
f.write(f"Batch Size: {self.batch_size}\n")
f.write(f"Max Workers: {self.max_workers}\n\n")
# Pipeline issues
f.write("PIPELINE ISSUES BREAKDOWN:\n")
for issue_type, count in self.pipeline_issues.items():
percentage = (count / len(df)) * 100 if len(df) > 0 else 0
f.write(f"{issue_type.replace('_', ' ').title()}: {count} ({percentage:.1f}%)\n")
f.write("\n")
if len(successful) > 0:
f.write("TIMING STATISTICS:\n")
f.write(f"Average Time: {successful['total_time'].mean():.3f}s\n")
f.write(f"Median Time: {successful['total_time'].median():.3f}s\n")
f.write(f"Min Time: {successful['total_time'].min():.3f}s\n")
f.write(f"Max Time: {successful['total_time'].max():.3f}s\n")
f.write(f"Std Dev: {successful['total_time'].std():.3f}s\n\n")
# Step timing analysis
step_columns = [col for col in df.columns if col.endswith('_time') and col != 'total_time']
if step_columns:
f.write("STEP TIMING ANALYSIS:\n")
for step in step_columns:
avg_time = successful[step].mean()
step_name = step.replace('_time', '').replace('_', ' ').title()
f.write(f"{step_name}: {avg_time:.3f}s avg\n")
f.write("\n")
# Response quality analysis
if 'response_quality' in df.columns:
f.write("RESPONSE QUALITY ANALYSIS:\n")
quality_counts = df['response_quality'].value_counts()
for quality, count in quality_counts.items():
percentage = (count / len(df)) * 100
f.write(f"{quality.title()}: {count} ({percentage:.1f}%)\n")
f.write("\n")
# Batch performance
f.write("BATCH PERFORMANCE:\n")
for batch_meta in self.batch_results:
f.write(f"Batch {batch_meta['batch_num']}: ")
f.write(f"{batch_meta['successful_count']}/{batch_meta['batch_size']} successful, ")
f.write(f"{batch_meta.get('needs_review_count', 0)} need review, ")
f.write(f"{batch_meta['batch_time']:.2f}s total, ")
f.write(f"{batch_meta['avg_time_per_question']:.3f}s avg\n")
logger.info(f"Enhanced summary report saved to: {summary_path}")
def save_pipeline_issues_report(self, df: pd.DataFrame, output_dir: str):
"""Save detailed pipeline issues analysis"""
issues_path = os.path.join(output_dir, "pipeline_issues_analysis.csv")
# Filter rows that need review
issues_df = df[df['needs_review'] == True].copy()
if len(issues_df) > 0:
# Select relevant columns for issues analysis
issue_columns = [
'example_id', 'question', 'clean_answer', 'issue_type',
'issue_reason', 'autism_related', 'response_quality',
'response_length', 'total_time', 'status'
]
issues_analysis = issues_df[issue_columns]
issues_analysis.to_csv(issues_path, index=False)
logger.info(f"Pipeline issues analysis saved to: {issues_path}")
else:
logger.info("No pipeline issues found - skipping issues report")
def save_step_timing_analysis(self, df: pd.DataFrame, output_dir: str):
"""Save detailed step timing analysis"""
timing_path = os.path.join(output_dir, "step_timing_analysis.csv")
# Get successful queries only
successful_df = df[df['status'] == 'success'].copy()
if len(successful_df) > 0:
# Select timing columns
timing_columns = ['example_id', 'question', 'total_time']
step_columns = [col for col in df.columns if col.endswith('_time') and col != 'total_time']
timing_columns.extend(step_columns)
timing_analysis = successful_df[timing_columns]
timing_analysis.to_csv(timing_path, index=False)
logger.info(f"Step timing analysis saved to: {timing_path}")
else:
logger.info("No successful queries for timing analysis")
def load_questions_from_csv(file_path: str, question_column: str = 'question') -> List[str]:
"""Load questions from CSV file"""
if not os.path.exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
try:
df = pd.read_csv(file_path)
logger.info(f"Loaded CSV with {len(df)} rows")
if question_column not in df.columns:
available_columns = list(df.columns)
raise ValueError(f"Column '{question_column}' not found. Available: {available_columns}")
# Extract questions and clean them
questions = []
for _, row in df.iterrows():
question = str(row[question_column]).strip()
if question and question.lower() != 'nan':
questions.append(question)
logger.info(f"Extracted {len(questions)} valid questions")
return questions
except Exception as e:
raise Exception(f"Error reading CSV file: {e}")
def create_sample_questions() -> List[str]:
"""Create sample autism-related questions for testing"""
sample_questions = [
"What are the early signs of autism in children?",
"How can I help my autistic child with social skills?",
"What are sensory processing issues in autism?",
"What educational strategies work best for autistic students?",
"How do I support an autistic family member?",
"What are common myths about autism?",
"How does autism affect communication?",
"What therapies are available for autism?",
"How can schools better support autistic students?",
"What workplace accommodations help autistic employees?",
"What is stimming and why do autistic people do it?",
"How can I make my home more autism-friendly?",
"What should I know about autism and employment?",
"How do I explain autism to other children?",
"What are the different types of autism spectrum disorders?",
"How can technology help autistic individuals?",
"What role does diet play in autism management?",
"How do I find good autism resources in my area?",
"What are the signs of autism in teenagers?",
"How can I advocate for my autistic child at school?",
"Tell me about the weather today", # Non-autism query for testing
"What's 2+2?", # Another non-autism query
]
return sample_questions
def print_enhanced_summary_stats(df: pd.DataFrame, batch_metadata: List[Dict], pipeline_issues: Dict):
"""Print comprehensive enhanced summary statistics"""
successful = df[df['status'] == 'success']
failed = df[df['status'] == 'error']
needs_review = df[df['needs_review'] == True]
print("\n" + "="*80)
print("ENHANCED BATCH BENCHMARK SUMMARY")
print("="*80)
print(f"Total Questions: {len(df)}")
print(f"Total Batches: {len(batch_metadata)}")
print(f"Successful: {len(successful)} ({len(successful)/len(df)*100:.1f}%)")
print(f"Failed: {len(failed)} ({len(failed)/len(df)*100:.1f}%)")
print(f"Needs Review: {len(needs_review)} ({len(needs_review)/len(df)*100:.1f}%)")
# Pipeline issues breakdown
print(f"\nPIPELINE ISSUES BREAKDOWN:")
total_issues = sum(pipeline_issues.values())
for issue_type, count in pipeline_issues.items():
if count > 0:
percentage = (count / len(df)) * 100 if len(df) > 0 else 0
print(f" {issue_type.replace('_', ' ').title()}: {count} ({percentage:.1f}%)")
if len(successful) > 0:
print(f"\nOVERALL TIMING STATISTICS:")
print(f"Average Time: {successful['total_time'].mean():.3f}s")
print(f"Median Time: {successful['total_time'].median():.3f}s")
print(f"Min Time: {successful['total_time'].min():.3f}s")
print(f"Max Time: {successful['total_time'].max():.3f}s")
print(f"Std Dev: {successful['total_time'].std():.3f}s")
# Step timing analysis
step_columns = [col for col in df.columns if col.endswith('_time') and col != 'total_time']
if step_columns:
print(f"\nSTEP TIMING ANALYSIS (Average):")
for step in step_columns:
avg_time = successful[step].mean()
step_name = step.replace('_time', '').replace('_', ' ').title()
percentage_of_total = (avg_time / successful['total_time'].mean()) * 100
print(f" {step_name}: {avg_time:.3f}s ({percentage_of_total:.1f}% of total)")
# Performance grades
def get_grade(time_val):
if time_val < 15: return "A+ (Excellent)"
elif time_val < 20: return "A (Good)"
elif time_val < 25: return "B (Average)"
elif time_val < 40: return "C (Slow)"
else: return "D (Very Slow)"
grades = successful['total_time'].apply(get_grade)
grade_counts = grades.value_counts()
print(f"\nPERFORMANCE GRADES:")
for grade, count in grade_counts.items():
print(f" {grade}: {count} questions ({count/len(successful)*100:.1f}%)")
# Response quality analysis
if 'response_quality' in df.columns:
print(f"\nRESPONSE QUALITY ANALYSIS:")
quality_counts = df['response_quality'].value_counts()
for quality, count in quality_counts.items():
percentage = (count / len(df)) * 100
print(f" {quality.title()}: {count} ({percentage:.1f}%)")
# Autism relevance analysis
if 'autism_related' in df.columns:
autism_related = df[df['autism_related'] == True]
print(f"\nAUTISM RELEVANCE ANALYSIS:")
print(f" Autism-related queries: {len(autism_related)} ({len(autism_related)/len(df)*100:.1f}%)")
print(f" Non-autism queries: {len(df) - len(autism_related)} ({(len(df) - len(autism_related))/len(df)*100:.1f}%)")
# Batch performance summary
if batch_metadata:
print(f"\nBATCH PERFORMANCE SUMMARY:")
total_batch_time = sum(b['batch_time'] for b in batch_metadata)
avg_batch_time = total_batch_time / len(batch_metadata)
print(f"Average Batch Time: {avg_batch_time:.2f}s")
print(f"Fastest Batch: {min(b['batch_time'] for b in batch_metadata):.2f}s")
print(f"Slowest Batch: {max(b['batch_time'] for b in batch_metadata):.2f}s")
# Show individual batch performance
print(f"\nINDIVIDUAL BATCH PERFORMANCE:")
for batch in batch_metadata:
success_rate = batch['successful_count'] / batch['batch_size'] * 100
review_count = batch.get('needs_review_count', 0)
print(f" Batch {batch['batch_num']:2d}: {batch['successful_count']:2d}/{batch['batch_size']:2d} "
f"({success_rate:5.1f}% success, {review_count:2d} review) "
f"in {batch['batch_time']:6.2f}s ({batch['avg_time_per_question']:.3f}s avg)")
if len(failed) > 0:
print(f"\nERROR ANALYSIS:")
error_counts = failed['error_message'].value_counts()
for error, count in error_counts.head(5).items():
print(f" {error[:60]}...: {count} times")
# Review recommendations
print(f"\nREVIEW RECOMMENDATIONS:")
if len(needs_review) > 0:
print(f" π {len(needs_review)} questions need manual review")
if 'issue_type' in df.columns:
issue_types = needs_review['issue_type'].value_counts()
for issue_type, count in issue_types.items():
print(f" - {issue_type.replace('_', ' ').title()}: {count} questions")
else:
print(f" β
No questions need manual review")
print("="*80)
def main():
"""Main function to run the enhanced batch benchmark"""
parser = argparse.ArgumentParser(
description="Enhanced batch benchmark runner for pipeQuery autism AI pipeline with detailed step timing",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
python benchmark_runner.py questions.csv
python benchmark_runner.py questions.csv --batch-size 20 --max-workers 5
python benchmark_runner.py questions.csv --max 50 --output my_results
python benchmark_runner.py --sample 25 --batch-size 5
python benchmark_runner.py --sample 100 --batch-size 10 --max-workers 3
"""
)
parser.add_argument('input_csv', nargs='?', help='Path to CSV file with questions')
parser.add_argument('--column', '-c', default='question',
help='Name of question column (default: question)')
parser.add_argument('--max', '-m', type=int,
help='Maximum number of questions to process')
parser.add_argument('--output', '-o',
help='Output directory path')
parser.add_argument('--sample', '-s', type=int,
help='Create and test with N sample questions')
parser.add_argument('--batch-size', '-b', type=int, default=10,
help='Number of questions per batch (default: 10)')
parser.add_argument('--max-workers', '-w', type=int, default=3,
help='Maximum worker threads per batch (default: 3)')
parser.add_argument('--no-batch-files', action='store_true',
help='Do not save individual batch files')
parser.add_argument('--detailed-timing', action='store_true', default=True,
help='Enable detailed step timing analysis (default: True)')
args = parser.parse_args()
try:
# Initialize enhanced batch benchmark runner
benchmark = EnhancedPipelineBenchmark(
batch_size=args.batch_size,
max_workers=args.max_workers
)
# Get questions
if args.sample:
print(f"Creating {args.sample} sample questions...")
all_sample_questions = create_sample_questions()
# Repeat questions if needed to reach sample size
questions = (all_sample_questions * ((args.sample // len(all_sample_questions)) + 1))[:args.sample]
elif args.input_csv:
print(f"Loading questions from {args.input_csv}...")
questions = load_questions_from_csv(args.input_csv, args.column)
else:
# Default to small sample
print("No input specified, using 15 sample questions...")
questions = create_sample_questions()[:15]
# Run enhanced batch benchmark
print(f"\nRunning enhanced batch benchmark on {len(questions)} questions...")
print(f"Batch size: {args.batch_size}, Max workers: {args.max_workers}")
print(f"Detailed timing: {'Enabled' if args.detailed_timing else 'Disabled'}")
df, output_dir = benchmark.run_batch_benchmark(
questions,
args.max,
args.output,
save_individual_batches=not args.no_batch_files
)
# Save final results
combined_path, batch_metadata_path = benchmark.save_final_results(df, output_dir)
# Print comprehensive enhanced summary
print_enhanced_summary_stats(df, benchmark.batch_results, benchmark.pipeline_issues)
print(f"\nπ RESULTS SUMMARY:")
print(f"Results directory: {output_dir}")
print(f"Combined results: {combined_path}")
print(f"Batch metadata: {batch_metadata_path}")
# Additional output files
additional_files = [
"benchmark_summary.txt",
"pipeline_issues_analysis.csv",
"step_timing_analysis.csv"
]
print(f"Additional analysis files:")
for file in additional_files:
file_path = os.path.join(output_dir, file)
if os.path.exists(file_path):
print(f" - {file}")
# Performance insights
successful = df[df['status'] == 'success']
if len(successful) > 0:
print(f"\nπ― KEY INSIGHTS:")
avg_time = successful['total_time'].mean()
needs_review_count = len(df[df['needs_review'] == True])
print(f" β’ Average processing time: {avg_time:.2f} seconds")
print(f" β’ Questions needing review: {needs_review_count}/{len(df)} ({needs_review_count/len(df)*100:.1f}%)")
if needs_review_count > 0:
print(f" β’ Review the pipeline_issues_analysis.csv for detailed breakdown")
# Step timing insights
step_columns = [col for col in df.columns if col.endswith('_time') and col != 'total_time']
if step_columns:
slowest_step = None
slowest_time = 0
for step in step_columns:
avg_step_time = successful[step].mean()
if avg_step_time > slowest_time:
slowest_time = avg_step_time
slowest_step = step.replace('_time', '').replace('_', ' ').title()
if slowest_step:
print(f" β’ Slowest pipeline step: {slowest_step} ({slowest_time:.3f}s avg)")
except KeyboardInterrupt:
print("\nBenchmark interrupted by user")
except Exception as e:
print(f"Error: {e}")
import traceback
traceback.print_exc()
return 1
return 0
if __name__ == "__main__":
exit(main()) |