File size: 20,233 Bytes
712579e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
from query_utils import process_query_for_rewrite, get_non_autism_response
from logger.custom_logger import CustomLoggerTracker
from dotenv import load_dotenv
from query_utils import check_answer_autism_relevance, get_non_autism_answer_response
from clients import get_weaviate_client, qwen_generate
from query_utils import process_query_for_rewrite
from rag_steps import *
from rag_utils import *
from prompt_template import (
Prompt_template_Wisal,
Prompt_template_User_document_prompt)
import os
import asyncio
from typing import Dict
from configs import load_yaml_config
config = load_yaml_config("config.yaml")
# Load .env early
load_dotenv()
# ---------------------------
# Custom Logger Initialization
# ---------------------------
custom_log = CustomLoggerTracker()
logger = custom_log.get_logger("doc_utils")
logger.info("Logger initialized for Documents utilities module")
# ---------------------------
# Environment & Globals
# ---------------------------
# client = get_weaviate_client()
# if client is None:
# logger.info("Weaviate client not connected. Please check your WEAVIATE_URL and WEAVIATE_API_KEY.")
# else:
# logger.info("Weaviate client connected (startup checks skipped).")
SESSION_ID = "default"
pending_clarifications: Dict[str, str] = {}
SILICONFLOW_API_KEY = os.getenv("SILICONFLOW_API_KEY", "")
SILICONFLOW_URL = os.getenv("SILICONFLOW_URL", "").strip()
SILICONFLOW_CHAT_URL = os.getenv(
"SILICONFLOW_CHAT_URL", "https://api.siliconflow.com/v1/chat/completions").strip()
if not SILICONFLOW_API_KEY:
logger.warning(
"SILICONFLOW_API_KEY is not set. LLM/Reranker calls may fail.")
if not SILICONFLOW_URL:
logger.warning(
"SILICONFLOW_URL is not set. OpenAI client base_url will not work.")
# Global variables - consider moving to a config class
last_uploaded_path = None
def get_text_splitter():
"""Factory function for text splitter - makes testing easier"""
return RecursiveCharacterTextSplitter(
chunk_size=config["chunking"]["chunk_size"],
# Fixed: was chunk_size
chunk_overlap=config["chunking"]["chunk_overlap"],
separators=config["chunking"]["separators"], # Fixed: was chunk_size
)
# ---------------------------
# RAG DOMAIN FUNCTIONS
# ---------------------------
def rag_dom_ingest(file_path: str) -> str:
if not os.path.exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
try:
raw = extract_text(file_path)
if not raw.strip():
raise ValueError(f"No text extracted from {file_path}")
splitter = get_text_splitter()
docs = splitter.split_text(raw)
# Filter empty chunks
texts = [chunk for chunk in docs if chunk.strip()]
if not texts:
raise ValueError("No valid text chunks created")
vectors = embed_texts(texts)
collection_name = config['rag']['weavaite_collection']
logger.info(f"RAG domain ingesting to collection: {collection_name}")
client = get_weaviate_client()
# Batch insert with error handling
with client.batch.dynamic() as batch:
for txt, vec in zip(texts, vectors):
batch.add_object(
collection=collection_name,
properties={"text": txt},
vector=vec)
logger.info(f"Successfully ingested {len(texts)} chunks from {os.path.basename(file_path)}")
return f"Ingested {len(texts)} chunks from {os.path.basename(file_path)}"
except Exception as e:
logger.exception(f"Error ingesting file {file_path}: {e}")
finally:
if client is not None:
try:
client.close()
except Exception as close_error:
logger.error(f"Error closing Weaviate client: {close_error}")
def rag_dom_qa(question: str) -> str:
if not question.strip():
return "Please provide a valid question."
try:
corrected_query, is_autism_related, _ = process_query_for_rewrite(
question)
if not is_autism_related:
return get_non_autism_response()
q_vec = embed_texts([corrected_query])[0]
collection_name = config["rag"]["weavaite_collection"]
logger.info(f"RAG domain QA using collection: {collection_name}")
client = get_weaviate_client()
documents = client.collections.get(collection_name)
response = documents.query.near_vector(
near_vector=q_vec,
limit=5,
return_metadata=["distance"])
hits = response.objects
if not hits:
return "I couldn't find relevant information to answer your question."
context = "\n\n".join(hit.properties["text"] for hit in hits)
wisal_prompt = Prompt_template_Wisal.format(
new_query=corrected_query,
document=context)
initial_answer = qwen_generate(wisal_prompt)
answer_relevance_score = check_answer_autism_relevance(initial_answer)
if answer_relevance_score < 50:
return get_non_autism_answer_response()
return initial_answer
except Exception as e:
logger.error(f"Error in RAG domain QA: {e}")
return f"Sorry, I encountered an error processing your question: {str(e)}"
finally:
if client is not None:
try:
client.close()
except Exception as close_error:
logger.error(f"Error closing Weaviate client: {close_error}")
# ---------------------------
# OLD DOCUMENTS
# ---------------------------
async def old_doc_vdb(query: str, top_k: int = 1) -> dict:
"""Query old documents vector database"""
if not query.strip():
return {"answer": []}
qe = encode_query(query)
if not qe:
return {"answer": []}
try:
client = get_weaviate_client()
coll = client.collections.get(config["rag"]["weavaite_collection"]) ## old_documents
res = coll.query.near_vector(
near_vector=qe,
limit=top_k,
return_properties=["text"])
if not getattr(res, "objects", None):
return {"answer": []}
return {"answer": [obj.properties.get("text", "[No Text]") for obj in res.objects]}
except Exception as e:
logger.error(f"RAG Error in old_doc_vdb: {e}")
return {"answer": []}
finally:
if client is not None:
try:
client.close()
except Exception as close_error:
logger.error(f"Error closing Weaviate client: {close_error}")
def old_doc_ingestion(path: str) -> str:
global last_uploaded_path
if not os.path.exists(path):
raise FileNotFoundError(f"File not found: {path}")
last_uploaded_path = path
logger.info(f"Old document path set: {os.path.basename(path)}")
return f"Old document ingested: {os.path.basename(path)}"
def old_doc_qa(query: str) -> str:
if not query.strip():
return "Please provide a valid question."
try:
corrected_query, is_autism_related, _ = process_query_for_rewrite(
query)
if not is_autism_related:
return get_non_autism_response()
rag_resp = asyncio.run(old_doc_vdb(corrected_query))
chunks = rag_resp.get("answer", [])
if not chunks:
return "Sorry, I couldn't find relevant content in the old document."
combined_answer = "\n".join(f"- {c}" for c in chunks if c.strip())
answer_relevance_score = check_answer_autism_relevance(combined_answer)
if answer_relevance_score < 50:
return get_non_autism_answer_response()
return combined_answer
except Exception as e:
logger.error(f"Error in old_doc_qa: {e}")
return f"Error processing your request: {e}"
# ---------------------------
# USER SPECIFIC DOCUMENTS
# ---------------------------
def user_doc_ingest(file_path: str) -> str:
if not os.path.exists(file_path):
raise FileNotFoundError(f"File not found: {file_path}")
try:
raw = extract_text(file_path)
if not raw.strip():
raise ValueError(f"No text extracted from {file_path}")
splitter = get_text_splitter()
docs = splitter.split_text(raw)
texts = [chunk for chunk in docs if chunk.strip()]
if not texts:
raise ValueError("No valid text chunks created")
vectors = embed_texts(texts)
client = get_weaviate_client()
collection_name = config["rag"]["weavaite_collection"]
# Batch insert
with client.batch.dynamic() as batch:
for txt, vec in zip(texts, vectors):
batch.add_object(
collection=collection_name,
properties={"text": txt},
vector=vec)
logger.info(
f"Successfully ingested user document: {os.path.basename(file_path)}")
return f"Ingested {len(texts)} chunks from {os.path.basename(file_path)}"
except Exception as e:
logger.exception(f"Error ingesting user document {file_path}: {e}")
finally:
if client is not None:
try:
client.close()
except Exception as close_error:
logger.error(f"Error closing Weaviate client: {close_error}")
def user_doc_qa(question: str) -> str:
if not question.strip():
return "Please provide a valid question."
try:
corrected_query, is_autism_related, _ = process_query_for_rewrite(
question)
if not is_autism_related:
return get_non_autism_response()
q_vec = embed_texts([corrected_query])[0]
client = get_weaviate_client()
documents = client.collections.get(
config["rag"]["weavaite_collection"])
response = documents.query.near_vector(
near_vector=q_vec,
limit=5,
return_metadata=["distance"])
hits = response.objects
if not hits:
return "I couldn't find relevant information to answer your question."
context = "\n\n".join(hit.properties["text"] for hit in hits)
UserSpecificDocument_prompt = Prompt_template_User_document_prompt.format(
new_query=corrected_query,
document=context)
initial_answer = qwen_generate(UserSpecificDocument_prompt)
answer_relevance_score = check_answer_autism_relevance(initial_answer)
if answer_relevance_score < 50:
return get_non_autism_answer_response()
return initial_answer
except Exception as e:
logger.error(f"Error in user_doc_qa: {e}")
return f"Sorry, I encountered an error processing your question: {str(e)}"
# finally:
# if client is not None:
# try:
# client.close()
# except Exception as close_error:
# logger.error(f"Error closing Weaviate client: {close_error}")
## close client of weaviate
# client.close()
if __name__ == "__main__":
# Test file paths
pdf_test = "tests/Computational Requirements for Embed.pdf"
docs_test = "tests/Computational Requirements for Embed.docx"
txt_test = "assets/RAG_Documents/Autism_Books_1.txt"
print(f"=" * 70)
print("COMPREHENSIVE RAG DOCUMENT UTILS TEST SUITE")
print(f"=" * 70)
# ===========================
# Test 1: RAG Domain Functions
# ===========================
print(f"\n{'=' * 50}")
print("TEST 1: RAG DOMAIN FUNCTIONS")
print(f"{'=' * 50}")
try:
print(f"Testing RAG domain ingestion with: {os.path.basename(txt_test)}")
if os.path.exists(txt_test):
result = rag_dom_ingest(txt_test)
print(f"β RAG Domain Ingestion Result: {result}")
# Test RAG domain QA
print(f"\nTesting RAG domain QA...")
test_questions = [
"What is autism?",
"How can I help a child with autism?",
"What are the symptoms of autism?",
"Tell me about weather today" # Non-autism related
]
for question in test_questions:
print(f"\nQ: {question}")
answer = rag_dom_qa(question)
print(f"A: {answer[:200]}{'...' if len(answer) > 200 else ''}")
else:
print(f"β Test file not found: {txt_test}")
except Exception as e:
print(f"β RAG Domain Test Failed: {e}")
# ===========================
# Test 2: Old Document Functions
# ===========================
print(f"\n{'=' * 50}")
print("TEST 2: OLD DOCUMENT FUNCTIONS")
print(f"{'=' * 50}")
try:
print(f"Testing old document ingestion...")
if os.path.exists(txt_test):
result = old_doc_ingestion(txt_test)
print(f"β Old Document Ingestion Result: {result}")
# Test old document QA
print(f"\nTesting old document QA...")
test_questions = [
"What information is in this document?",
"Tell me about autism interventions",
"What is machine learning?" # Non-autism related
]
for question in test_questions:
print(f"\nQ: {question}")
answer = old_doc_qa(question)
print(f"A: {answer[:200]}{'...' if len(answer) > 200 else ''}")
else:
print(f"β Test file not found: {txt_test}")
except Exception as e:
print(f"β Old Document Test Failed: {e}")
# ===========================
# Test 3: User Document Functions
# ===========================
print(f"\n{'=' * 50}")
print("TEST 3: USER DOCUMENT FUNCTIONS")
print(f"{'=' * 50}")
try:
print(f"Testing user document ingestion...")
if os.path.exists(txt_test):
result = user_doc_ingest(txt_test)
print(f"β User Document Ingestion Result: {result}")
# Test user document QA
print(f"\nTesting user document QA...")
test_questions = [
"What does this document say about autism?",
"Are there any treatment recommendations?",
"What's the capital of France?" # Non-autism related
]
for question in test_questions:
print(f"\nQ: {question}")
answer = user_doc_qa(question)
print(f"A: {answer[:200]}{'...' if len(answer) > 200 else ''}")
else:
print(f"β Test file not found: {txt_test}")
except Exception as e:
print(f"β User Document Test Failed: {e}")
# ===========================
# Test 4: Multiple File Format Support
# ===========================
print(f"\n{'=' * 50}")
print("TEST 4: MULTIPLE FILE FORMAT SUPPORT")
print(f"{'=' * 50}")
test_files = [
(pdf_test, "PDF"),
(docs_test, "DOCX"),
(txt_test, "TXT")
]
for file_path, file_type in test_files:
print(f"\nTesting {file_type} file: {os.path.basename(file_path)}")
if os.path.exists(file_path):
try:
# Test extraction
text = extract_text(file_path)
if text:
print(f"β {file_type} text extraction successful: {len(text)} characters")
print(f" Preview: {text[:100]}...")
# Test ingestion
result = rag_dom_ingest(file_path)
print(f"β {file_type} ingestion successful: {result}")
else:
print(f"β {file_type} text extraction returned empty")
except Exception as e:
print(f"β {file_type} processing failed: {e}")
else:
print(f"β {file_type} file not found: {file_path}")
# ===========================
# Test 5: Error Handling
# ===========================
print(f"\n{'=' * 50}")
print("TEST 5: ERROR HANDLING")
print(f"{'=' * 50}")
# Test with non-existent file
print("Testing with non-existent file...")
try:
result = rag_dom_ingest("non_existent_file.txt")
print(f"β Should have failed: {result}")
except FileNotFoundError:
print("β Correctly handled non-existent file")
except Exception as e:
print(f"β Handled error: {e}")
# Test with empty query
print("\nTesting with empty query...")
empty_result = rag_dom_qa("")
print(f"β Empty query handled: {empty_result}")
# Test with very long query
print("\nTesting with very long query...")
long_query = "autism " * 100 + "what is it?"
long_result = rag_dom_qa(long_query)
print(f"β Long query handled: {long_result[:100]}...")
# ===========================
# Test 6: Old Document Vector DB
# ===========================
print(f"\n{'=' * 50}")
print("TEST 6: OLD DOCUMENT VECTOR DB")
print(f"{'=' * 50}")
try:
print("Testing old document vector database query...")
vdb_result = asyncio.run(old_doc_vdb("autism interventions", top_k=3))
print(f"β Vector DB query successful: {len(vdb_result.get('answer', []))} results")
for i, answer in enumerate(vdb_result.get('answer', [])[:2]):
print(f" Result {i+1}: {answer[:100]}...")
except Exception as e:
print(f"β Vector DB test failed: {e}")
# ===========================
# Test 7: Configuration and Environment
# ===========================
print(f"\n{'=' * 50}")
print("TEST 7: CONFIGURATION AND ENVIRONMENT")
print(f"{'=' * 50}")
print("Checking environment variables...")
env_vars = [
"SILICONFLOW_API_KEY",
"SILICONFLOW_URL",
"SILICONFLOW_CHAT_URL",
"WEAVIATE_URL",
"WEAVIATE_API_KEY"
]
for var in env_vars:
value = os.getenv(var)
if value:
print(f"β {var}: Set (length: {len(value)})")
else:
print(f"β {var}: Not set")
print(f"\nChecking configuration...")
try:
print(f"β Chunk size: {config['chunking']['chunk_size']}")
print(f"β Chunk overlap: {config['chunking']['chunk_overlap']}")
print(f"β RAG collection: {config['rag']['weavaite_collection']}")
print(f"β Old doc collection: {config['rag']['old_doc']}")
except Exception as e:
print(f"β Configuration error: {e}")
# ===========================
# Test 8: Text Splitter
# ===========================
print(f"\n{'=' * 50}")
print("TEST 8: TEXT SPLITTER")
print(f"{'=' * 50}")
try:
splitter = get_text_splitter()
sample_text = "This is a sample text. " * 100 # Create long text
chunks = splitter.split_text(sample_text)
print(f"β Text splitter created {len(chunks)} chunks")
print(f"β Average chunk size: {sum(len(c) for c in chunks) / len(chunks):.0f} characters")
except Exception as e:
print(f"β Text splitter test failed: {e}")
# ===========================
# Test Summary
# ===========================
print(f"\n{'=' * 70}")
print("TEST SUMMARY")
print(f"{'=' * 70}")
print("β All major functions tested")
print("β Error handling verified")
print("β Multiple file formats supported")
print("β Configuration checked")
print("β Vector database operations tested")
print(f"{'=' * 70}")
print("TEST SUITE COMPLETED")
print(f"{'=' * 70}")
# # Close client properly
# try:
# if 'client' in globals() and client:
# client.close()
# print("β Weaviate client closed properly")
# except Exception as e:
# print(f"β Error closing client: {e}")
|