File size: 30,874 Bytes
712579e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 |
from logger.custom_logger import CustomLoggerTracker
from dotenv import load_dotenv
import requests
from langdetect import detect
from web_search import search_autism
from rag_utils import rag_autism
from clients import qwen_generate
from query_utils import process_query_for_rewrite
from rag_utils import is_greeting_or_thank
from prompt_template import *
import os
import re
import time
import asyncio
from typing import List, Dict, Optional
from configs import load_yaml_config
from query_utils import *
config = load_yaml_config("config.yaml")
# from configs import _log
# Load .env early
load_dotenv()
# -----------------------------
# Custom Logger Initialization
# -----------------------------
custom_log = CustomLoggerTracker()
logger = custom_log.get_logger("Pipeline Query")
logger.info("Logger initialized for Pipeline Query module")
# ---------------------------
# Environment & Globals
# ---------------------------
SESSION_ID = "default"
pending_clarifications: Dict[str, str] = {}
SILICONFLOW_API_KEY = os.getenv("SILICONFLOW_API_KEY", "")
SILICONFLOW_URL = os.getenv("SILICONFLOW_URL", "").strip()
SILICONFLOW_CHAT_URL = os.getenv(
"SILICONFLOW_CHAT_URL", "https://api.siliconflow.com/v1/chat/completions").strip()
if not SILICONFLOW_API_KEY:
logger.warning(
"SILICONFLOW_API_KEY is not set. LLM/Reranker calls may fail.")
if not SILICONFLOW_URL:
logger.warning(
"SILICONFLOW_URL is not set. OpenAI client base_url will not work.")
# ---------------------------
# Utility Functions
# ---------------------------
import re
def clean_pipeline_result(result: str) -> str:
if not result:
# English-only error message regardless of input language
return "I apologize, but I couldn't generate a response. Please try again."
result = str(result)
# Remove <think> tags and their content completely
result = re.sub(r'<think>.*?</think>', '', result, flags=re.DOTALL)
# Remove any remaining HTML tags except basic formatting
result = re.sub(r'<div[^>]*>', '', result)
result = re.sub(r'</div>', '', result)
result = re.sub(r'<br\s*/?>', '\n', result)
# Clean up extra whitespace
result = re.sub(r'\n\s*\n\s*\n', '\n\n', result)
result = result.strip()
if len(result.strip()) < 10:
# English-only error message regardless of input language
return "I apologize, but there was an issue generating a complete response. Please try again."
return result
def clean_hallucination_score(raw_score_text: str) -> int:
"""
Clean and extract hallucination score from LLM response.
Handles responses like "Score: 5**" or "**Score: 4**" etc.
"""
try:
# Extract numbers from the text
numbers = re.findall(r'\d+', str(raw_score_text))
if numbers:
score = int(numbers[0])
return max(1, min(5, score))
else:
logger.warning(f"No numbers found in hallucination score: {raw_score_text}")
return 3 # Default fallback score
except Exception as e:
logger.error(f"Error parsing hallucination score '{raw_score_text}': {e}")
return 3 # Default fallback score
def _log(process_log: List[str], message: str, level: str = "info") -> None:
"""Append to process_log AND send to the central logger."""
process_log.append(message)
if level == "error":
logger.error(message)
elif level == "warning":
logger.warning(message)
else:
logger.info(message)
#############################
# ---------------------------
# Main Pipeline
# ---------------------------
#############################
def process_autism_pipeline(query, corrected_query, process_log, intro, start_ts):
step_times: Dict[str, float] = {}
# --------------
# Web Search
# --------------
# Step 1: Web Search
logger.info("Starting web search phase[1]:")
loop = asyncio.get_event_loop()
if loop.is_running():
_log(process_log, "Event loop is running, using create_task for search.")
task = asyncio.create_task(search_autism(corrected_query))
web_search_resp = loop.run_until_complete(task)
else:
web_search_resp = asyncio.run(search_autism(corrected_query))
web_answer = web_search_resp.get("answer", "")
step_times["Web Search"] = time.time() - start_ts
print("=" * 50)
print("=" * 50)
print(f"Web Answer: β
{web_answer}")
print("=" * 50)
print("=" * 50)
_log(process_log, f"β
Web Search answer: {web_answer}")
# --------------
# LLM Generation
# --------------
# Step 2: LLM Generation
logger.info("Starting LLM generation phase[2]:")
gen_prompt = Prompt_template_LLM_Generation.format(new_query=corrected_query)
t0 = time.time()
generated = qwen_generate(gen_prompt)
step_times["LLM Generation"] = time.time() - t0
_log(process_log, f"β
LLM Generated: {generated}")
# --------------
# RAG Retrieval
# --------------
# Step 3: RAG Retrieval
logger.info("Starting RAG retrieval phase[3]: ")
t0 = time.time()
# loop = asyncio.get_event_loop()
# if loop.is_running():
# _log(process_log, "Event loop is running, using create_task for rag.")
# task = asyncio.create_task(rag_autism(corrected_query, top_k=3))
# rag_resp = loop.run_until_complete(task)
# else:
# rag_resp = asyncio.run(rag_autism(corrected_query, top_k=3))
# rag_contexts = rag_resp.get("answer", [])
# step_times["RAG Retrieval"] = time.time() - t0
# _log(process_log, f"RAG Contexts: {rag_contexts}")
start = time.time()
rag_resp = asyncio.run(rag_autism(corrected_query, top_k=3))
rag_contexts = rag_resp.get("answer", [])
step_times["RAG Retrieval"] = time.time() - start
_log(process_log, f"β
RAG Contexts: {rag_contexts}")
# --------------
# Reranking
# --------------
# Step 4: Reranking
logger.info("Starting reranking phase")
t0 = time.time()
items_to_rerank = [generated, web_answer] + rag_contexts
rerank_payload = {
"model": config["apis_models"]["silicon_flow"]["qwen"]["rerank"],
"query": corrected_query,
"documents": items_to_rerank}
rerank_headers = {
"Authorization": f"Bearer {SILICONFLOW_API_KEY}",
"Content-Type": "application/json"}
reranked = generated
_log(process_log, "Rerank: [generated, web_answer] + rag_contexts")
_log(process_log, f"Rerank Model: {config['apis_models']['silicon_flow']['qwen']['rerank']}")
_log(process_log, "Calling SiliconFlow rerank endpoint...")
r = requests.post(
os.environ["SILICONFLOW_RERANKING_URL"],
json=rerank_payload,
headers=rerank_headers,
timeout=60,)
if r.ok:
rerank_data = r.json()
ranked_docs = sorted(
zip(rerank_data.get("results", []), items_to_rerank),
key=lambda x: x[0].get("relevance_score", 0),
reverse=True)
reranked = ranked_docs[0][1] if ranked_docs else generated
_log(process_log, "Reranking succeeded.")
print("=" * 50)
print(f"Reranked Documents")
print("="*50)
_log(process_log, f"reranker docs: {ranked_docs}")
else:
_log(process_log, f"Rerank API failed: {r.text}", level="warning")
step_times["Reranking"] = time.time() - t0
_log(process_log, f"β
Reranked doc: {reranked}")
# --------------
# Wisal Answer
# --------------
# Step 5: Wisal Answer
logger.info("Generating Wisal answer")
wisal_prompt = Prompt_template_Wisal.format(
new_query=corrected_query, document=reranked)
t0 = time.time()
wisal = qwen_generate(wisal_prompt)
step_times["Wisal Answer"] = time.time() - t0
_log(process_log, f"β
Wisal Answer: {wisal}")
# ------------------------
# Hallucination Detection
# ------------------------
# Step 6: Hallucination Detection (FIXED)
logger.info("Running hallucination detection")
halluc_prompt = Prompt_template_Halluciations.format(
new_query=corrected_query, answer=wisal, document=reranked)
t0 = time.time()
halluc_raw = qwen_generate(halluc_prompt)
step_times["Hallucination Detection"] = time.time() - t0
_log(process_log, f"β
Hallucination Score Raw: {halluc_raw}")
# Use the new cleaning function
score = clean_hallucination_score(halluc_raw)
_log(process_log, f"β
Cleaned Hallucination Score: {score}")
# -------------
# Paraphrasing
# -------------
# Step 7: Paraphrasing if hallucination is medium or high
if score in (2, 3):
logger.info("Hallucination detected, running paraphrasing")
t0 = time.time()
_log(process_log, "Score indicates paraphrasing path.")
paraphrased = qwen_generate(
Prompt_template_paraphrasing.format(document=reranked))
wisal = qwen_generate(
Prompt_template_Wisal.format(
new_query=corrected_query, document=paraphrased))
step_times["Paraphrasing & Re-Wisal"] = time.time() - t0
_log(process_log, f"Paraphrased Wisal: {wisal}")
# -------------
# Translation
# -------------
# Step 8: Translation if needed
logger.info("Checking if translation is needed")
t0 = time.time()
detected_lang = "en"
if query.strip():
try:
detected_lang = detect(query)
except:
detected_lang = "en"
# CRITICAL: Always use English output regardless of input language
# Removed translation to original language to enforce English-only responses
is_english_text = bool(re.fullmatch(r"[A-Za-z0-9 .,?;:'\"!()\-]+", query))
# needs_translation = detected_lang != "en" or not is_english_text
# Force English output always
result = wisal
logger.info(f"Input language detected as: {detected_lang}, but output forced to English")
_log(process_log, f"Input language: {detected_lang}, Output language: English (forced)")
step_times["Language Detection & Translation"] = time.time() - t0
_log(process_log, f"β
Final Result: {result}")
for step, duration in step_times.items():
_log(process_log, f"β±οΈ {step} completed in {duration:.2f} seconds")
_save_process_log(process_log)
text_dir = "rtl" if detected_lang in ["ar", "fa", "ur", "he"] else "ltr"
# With this:
cleaned_result = clean_pipeline_result(result)
logger.info( f'<div dir="{text_dir}">{result}</div>')
logger.info("Pipeline completed successfully")
return cleaned_result
def _save_process_log(log_lines: List[str], filename: Optional[str] = None) -> None:
import datetime
logs_dir = os.path.join(os.path.dirname(__file__), "logs")
# Create directory if it doesn't exist
os.makedirs(logs_dir, exist_ok=True)
if not filename:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = f"log_{timestamp}.txt"
log_path = os.path.join(logs_dir, filename)
with open(log_path, "w", encoding="utf-8") as f:
for line in log_lines:
f.write(str(line) + "\n\n")
logger.info(f"Process log saved to {log_path}")
# ---------------------------
# Query Processing
# ---------------------------
def process_query(query: str, first_turn: bool = False, session_id: str = "default"):
start_ts = time.time()
intro = ""
process_log: List[str] = []
step_times: Dict[str, float] = {}
logger.info(f"π Query received at {time.strftime('%Y-%m-%d %H:%M:%S')}")
logger.info(f"π Session ID: {session_id}")
logger.info(f"π First turn: {first_turn}")
logger.info(f"π Query: {query}")
logger.info(f"Processing query: {query[:100]}... (session: {session_id})")
# Pending clarification flow
if session_id in pending_clarifications:
if query.strip().lower() == "yes":
corrected_query = pending_clarifications.pop(session_id)
step_times["Language Detection & Translation"] = time.time() - \
start_ts
_log(process_log, f"User confirmed clarification. corrected_query={corrected_query}")
return process_autism_pipeline(corrected_query, corrected_query, process_log, intro, start_ts)
else:
pending_clarifications.pop(session_id)
_log(process_log, "User rejected clarification; resetting session.")
# English-only response regardless of input language
return "Hello I'm Wisal, an AI assistant developed by Compumacy AI. Please ask a question specifically about autism."
if first_turn and (not query or query.strip() == ""):
_log(process_log, "Empty first turn; sending greeting.")
# English-only greeting regardless of input language
return "Hello! I'm Wisal, an AI assistant developed by Compumacy AI. How can I help you today?"
# Greetings/Thanks
intent = is_greeting_or_thank(query)
if intent == "greeting":
_log(process_log, "Greeting detected.")
# English-only greeting regardless of input language
return intro + "Hello! I'm Wisal, your AI assistant developed by Compumacy AI. How can I help you today?"
elif intent == "thanks":
_log(process_log, "Thanks detected.")
# English-only thanks response regardless of input language
return "You're welcome! π If you have more questions about autism, feel free to ask."
# Rewrite & relevance
logger.info(f"β±οΈ Query preprocessing completed in {time.time() - start_ts:.2f} seconds")
corrected_query, is_autism_related, rewritten_query = process_query_for_rewrite(query)
_log(process_log, f"β
Original Query: {query}")
_log(process_log, f"β
Corrected Query: {corrected_query}")
_log(process_log, f"β
Relevance Check: {'RELATED' if is_autism_related else 'NOT RELATED'}")
if rewritten_query:
_log(process_log, f"β
LLM rewritten: {rewritten_query}")
if not is_autism_related:
clarification = f"""β
Your query was not clearly related to autism. Do you mean: "{rewritten_query}"?"""
pending_clarifications[session_id] = rewritten_query
_log(process_log, f"β
Clarification prompted: {clarification}")
return clarification
logger.info(f"π Starting autism pipeline at {time.strftime('%Y-%m-%d %H:%M:%S')}")
return process_autism_pipeline(query, corrected_query, process_log, intro, start_ts)
# ---------------------------
# Testing Functions
# ---------------------------
def test_environment_setup():
"""Test environment variables and configuration"""
print("\n" + "="*60)
print("π§ TESTING ENVIRONMENT SETUP")
print("="*60)
test_results = {}
# Test API keys
test_results['SILICONFLOW_API_KEY'] = bool(SILICONFLOW_API_KEY)
test_results['SILICONFLOW_URL'] = bool(SILICONFLOW_URL)
test_results['SILICONFLOW_CHAT_URL'] = bool(SILICONFLOW_CHAT_URL)
# Test config loading
try:
test_results['config_loaded'] = bool(config)
test_results['apis_models_config'] = 'apis_models' in config
except Exception as e:
test_results['config_loaded'] = False
test_results['config_error'] = str(e)
# Test logger
try:
logger.info("Test log message")
test_results['logger_working'] = True
except Exception as e:
test_results['logger_working'] = False
test_results['logger_error'] = str(e)
# Print results
for key, value in test_results.items():
status = "β
" if value else "β"
print(f"{status} {key}: {value}")
return all(v for k, v in test_results.items() if not k.endswith('_error'))
def test_score_cleaning():
"""Test the new score cleaning function"""
print("\n" + "="*60)
print("π§Ή TESTING SCORE CLEANING FUNCTION")
print("="*60)
test_cases = [
("Score: 5**", 5),
("**Score: 4**", 4),
("Score: 3", 3),
("The score is 2 out of 5", 2),
("No numbers here", 3), # Should default to 3
("Score: 0", 1), # Should clamp to minimum 1
("Score: 10", 5), # Should clamp to maximum 5
("", 3), # Empty string should default to 3
]
results = {}
for input_text, expected in test_cases:
try:
result = clean_hallucination_score(input_text)
success = result == expected
status = "β
" if success else "β"
print(f"{status} Input: '{input_text}' -> Got: {result}, Expected: {expected}")
results[input_text or "empty"] = success
except Exception as e:
print(f"β Error with '{input_text}': {e}")
results[input_text or "empty"] = False
success_rate = sum(results.values()) / len(results)
print(f"\nπ Score Cleaning Success Rate: {success_rate:.1%}")
return results
def run_all_tests():
"""Run all tests and provide a summary"""
print("\n" + "π§ͺ" + "="*58)
print("π§ͺ RUNNING COMPREHENSIVE PIPELINE TESTS (FIXED VERSION)")
print("π§ͺ" + "="*58)
test_results = {}
# Run all test categories
print("Starting test suite...")
test_results["Environment"] = test_environment_setup()
test_results["Score Cleaning"] = test_score_cleaning()
# Test a simple query to make sure the fix works
print("\n" + "="*60)
print("π§© TESTING FIXED PIPELINE")
print("="*60)
try:
test_query = "What are the early signs of autism?"
print(f"Testing query: '{test_query}'")
start_time = time.time()
response = process_query(test_query, session_id="fix_test")
duration = time.time() - start_time
print(f"β
SUCCESS - Pipeline completed in {duration:.2f}s")
print(f"Response length: {len(response)} characters")
test_results["Fixed Pipeline"] = True
except Exception as e:
print(f"β FAILED - Error: {e}")
test_results["Fixed Pipeline"] = False
import traceback
traceback.print_exc()
# Print summary
print("\n" + "π" + "="*58)
print("π TEST SUMMARY")
print("π" + "="*58)
for test_name, result in test_results.items():
if isinstance(result, bool):
status = "β
PASS" if result else "β FAIL"
print(f"{status} {test_name}")
elif isinstance(result, dict):
passed = sum(result.values())
total = len(result)
print(f"π {test_name}: {passed}/{total} ({passed/total:.1%})")
else:
print(f"βΉοΈ INFO {test_name}: {result}")
print("\nπ Testing completed!")
return test_results
# Enhanced pipeQuery.py with better logic
def is_obvious_autism_query(query: str) -> bool:
"""Check if query is obviously autism-related to bypass heavy processing"""
obvious_keywords = [
'autism', 'autistic', 'asd', 'autism spectrum', 'asperger',
'stimming', 'stim', 'meltdown', 'sensory processing disorder',
'special interest', 'echolalia', 'repetitive behavior']
query_lower = query.lower()
return any(keyword in query_lower for keyword in obvious_keywords)
def is_obvious_non_autism_query(query: str) -> bool:
"""Check if query is obviously NOT autism-related"""
non_autism_patterns = [
r'\b(weather|temperature|forecast|rain|snow|sunny)\b',
r'\b(recipe|cooking|food preparation|ingredients)\b',
r'\b(sports|football|basketball|soccer|tennis)\b',
r'\b(stock market|investing|cryptocurrency|trading)\b',
r'\b(travel|vacation|hotel|flight|tourism)\b',
r'\b(movie|film|entertainment|celebrity|actor)\b']
query_lower = query.lower()
return any(re.search(pattern, query_lower) for pattern in non_autism_patterns)
# def process_query_for_rewrite(query: str) -> tuple[str, bool, str]:
# """Enhanced version with bypass mechanisms and better error handling"""
# try:
# logger.info(f"Enhanced processing for: '{query[:50]}...'")
# # Fast bypass for obvious autism queries
# if is_obvious_autism_query(query):
# logger.info("Obvious autism query detected - bypassing complex checks")
# corrected_query = qwen_generate(SIMPLE_TRANSLATION_PROMPT.format(query=query))
# if not corrected_query:
# corrected_query = query
# return corrected_query, True, ""
# # Fast bypass for obvious non-autism queries
# if is_obvious_non_autism_query(query):
# logger.info("Obvious non-autism query detected - rejecting")
# return query, False, ""
# # Regular processing for ambiguous cases
# return process_query_for_rewrite(query)
# except Exception as e:
# logger.error(f"Error in enhanced processing: {e}")
# # Default to accepting the query rather than rejecting
# return query, True, ""
# def multi_layer_relevance_check(query: str) -> dict:
# """Multi-layer approach: keyword check first, then LLM if needed"""
# try:
# # Layer 1: Fast keyword check
# keyword_score = quick_keyword_check(query)
# if keyword_score >= 80:
# return {
# "score": keyword_score,
# "category": "high_confidence_autism",
# "action": "accept_as_is",
# "reasoning": "Strong autism keywords detected"
# }
# elif keyword_score <= 20:
# return {
# "score": keyword_score,
# "category": "high_confidence_non_autism",
# "action": "reject",
# "reasoning": "No autism-related keywords detected"
# }
# # Layer 2: LLM check for ambiguous cases
# logger.info(f"Keyword score {keyword_score} - running LLM check")
# return enhanced_autism_relevance_check(query)
# except Exception as e:
# logger.error(f"Error in multi-layer check: {e}")
# # Default to acceptance with middle score
# return {
# "score": 50,
# "category": "uncertain",
# "action": "accept_as_is",
# "reasoning": "Error in processing, defaulting to accept"
# }
# def process_query(query: str, first_turn: bool = False, session_id: str = "default"):
# """Main query processing with improved logic"""
# start_ts = time.time()
# intro = ""
# process_log: List[str] = []
# logger.info(f"Processing query: {query[:100]}... (session: {session_id})")
# # Handle pending clarifications
# if session_id in pending_clarifications:
# if query.strip().lower() in ["yes", "y", "yeah", "sure", "ok"]:
# corrected_query = pending_clarifications.pop(session_id)
# _log(process_log, f"User confirmed clarification. Processing: {corrected_query}")
# return process_autism_pipeline(corrected_query, corrected_query, process_log, intro, start_ts)
# else:
# pending_clarifications.pop(session_id)
# _log(process_log, "User rejected clarification; resetting session.")
# return get_non_autism_response()
# # Handle first turn
# if first_turn and (not query or query.strip() == ""):
# _log(process_log, "Empty first turn; sending greeting.")
# return "Hello! I'm Wisal, your autism specialist AI assistant. How can I help you today?"
# # Handle greetings/thanks
# intent = is_greeting_or_thank(query)
# if intent == "greeting":
# _log(process_log, "Greeting detected.")
# return "Hello! I'm Wisal, your autism specialist AI assistant. How can I help you today?"
# elif intent == "thanks":
# _log(process_log, "Thanks detected.")
# return "You're welcome! If you have more questions about autism, feel free to ask."
# # IMPROVED: Use enhanced processing with bypasses
# try:
# corrected_query, is_autism_related, rewritten_query = process_query_for_rewrite(query)
# _log(process_log, f"Original Query: {query}")
# _log(process_log, f"Corrected Query: {corrected_query}")
# _log(process_log, f"Relevance Check: {'RELATED' if is_autism_related else 'NOT RELATED'}")
# if rewritten_query:
# _log(process_log, f"Rewritten: {rewritten_query}")
# if not is_autism_related:
# # IMPROVED: Only ask for clarification if query seems borderline
# relevance_result = multi_layer_relevance_check(query)
# if relevance_result["score"] > 30: # Borderline case
# clarification = f"Your query might be related to autism. Did you mean something about autism spectrum disorders? If yes, I can help with that."
# pending_clarifications[session_id] = rewritten_query or corrected_query
# _log(process_log, f"Clarification prompted: {clarification}")
# return clarification
# else:
# # Clearly not autism-related
# return get_non_autism_response()
# # Process through autism pipeline
# logger.info(f"Starting autism pipeline for: {corrected_query}")
# return process_autism_pipeline(query, corrected_query, process_log, intro, start_ts)
# except Exception as e:
# logger.error(f"Error in improved query processing: {e}")
# # Default to processing through pipeline rather than rejecting
# return process_autism_pipeline(query, query, process_log, intro, start_ts)
# Test function to validate improvements
def test_improved_pipeline():
"""Test the improved pipeline with various query types"""
test_cases = [
# Should be accepted immediately
("What is autism?", True),
("My autistic child has meltdowns", True),
("Autism spectrum disorder symptoms", True),
# Should be accepted after processing
("My child has behavioral issues", True),
("Sleep problems in 6 year old", True),
("ADHD and anxiety in teenagers", True),
("Social skills development", True),
# Should be clarified
("Child development milestones", True), # Borderline
("Family stress management", True), # Borderline
# Should be rejected
("What's the weather today?", False),
("How to cook pasta?", False),
("Stock market trends", False),
]
print("Testing improved pipeline:")
print("-" * 50)
for query, expected_acceptance in test_cases:
try:
_, is_relevant, _ = process_query_for_rewrite(query)
result = "ACCEPTED" if is_relevant else "REJECTED"
expected = "ACCEPTED" if expected_acceptance else "REJECTED"
status = "β
" if (is_relevant == expected_acceptance) else "β"
print(f"{status} '{query[:40]}...' -> {result} (expected {expected})")
except Exception as e:
print(f"β '{query[:40]}...' -> ERROR: {e}")
if __name__ == "__main__":
logger.info("PipeQuery Logger Starting ....")
# Test the fix immediately
print("\nπ§ TESTING SCORE CLEANING FIX...")
test_score_cleaning()
# Interactive testing menu
print("\n" + "π" + "="*58)
print("π WISAL AUTISM PIPELINE - TESTING SUITE (FIXED)")
print("π" + "="*58)
# Check if running in interactive mode or batch mode
import sys
if len(sys.argv) > 1:
# Command line argument provided
mode = sys.argv[1].lower()
if mode == "full":
run_all_tests()
elif mode == "fix":
test_score_cleaning()
else:
print(f"Unknown test mode: {mode}")
print("Available modes: full, fix")
else:
# Interactive mode
while True:
print("\n" + "π§" + " "*20 + "TEST MENU" + " "*20 + "π§")
print("1. π Run All Tests")
print("2. π§Ή Test Score Cleaning Fix")
print("3. π§© Test Fixed Pipeline")
print("4. π¬ Interactive Query Test")
print("0. πͺ Exit")
choice = input("\nEnter your choice (0-4): ").strip()
if choice == "1":
run_all_tests()
elif choice == "2":
test_score_cleaning()
elif choice == "3":
try:
test_query = input("Enter test query: ").strip()
if test_query:
print(f"\nπ Processing: {test_query}")
start_time = time.time()
response = process_query(test_query, session_id="manual_test")
duration = time.time() - start_time
print(f"\nβ
Response ({duration:.2f}s):")
print("-" * 50)
print(response)
print("-" * 50)
except Exception as e:
print(f"\nβ Error: {e}")
elif choice == "4":
# Interactive query testing
print("\n" + "π¬" + "="*40)
print("π¬ INTERACTIVE QUERY TESTING")
print("π¬" + "="*40)
print("Enter 'quit' to return to menu")
while True:
query = input("\nEnter your query: ").strip()
if query.lower() == 'quit':
break
try:
print(f"\nπ Processing: {query}")
start_time = time.time()
response = process_query(query, session_id="interactive_test")
duration = time.time() - start_time
print(f"\nβ
Response ({duration:.2f}s):")
print("-" * 50)
print(response)
print("-" * 50)
except Exception as e:
print(f"\nβ Error: {e}")
elif choice == "0":
print("\nπ Goodbye! The score cleaning fix should resolve your issue!")
break
else:
print("β Invalid choice. Please try again.")
input("\nPress Enter to continue...")
# test_improved_pipeline()
|