Spaces:
Sleeping
Sleeping
File size: 13,959 Bytes
df380ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import torch
import onnx
import onnxruntime
import numpy as np
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from typing import Dict, Tuple
import librosa
import os
class Wav2Vec2ONNXConverter:
"""Convert Wav2Vec2 model to ONNX format"""
def __init__(self, model_name: str = "facebook/wav2vec2-base-960h"):
"""Initialize the converter with the specified model"""
print(f"Loading Wav2Vec2 model: {model_name}")
self.model_name = model_name
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
self.model = Wav2Vec2ForCTC.from_pretrained(model_name)
# Disable flash attention and scaled_dot_product_attention for ONNX compatibility
if hasattr(self.model.config, 'use_flash_attention_2'):
self.model.config.use_flash_attention_2 = False
# Force model to use standard attention
if hasattr(self.model, 'wav2vec2') and hasattr(self.model.wav2vec2, 'encoder'):
for layer in self.model.wav2vec2.encoder.layers:
if hasattr(layer.attention, 'attention_dropout'):
# Ensure standard attention is used
layer.attention.attention_dropout = torch.nn.Dropout(layer.attention.attention_dropout.p)
self.model.eval()
self.sample_rate = 16000
print("Model loaded successfully")
def convert_to_onnx(self,
onnx_path: str = "wav2vec2_model.onnx",
input_length: int = 160000, # 10 seconds at 16kHz
opset_version: int = 14) -> str:
"""
Convert the Wav2Vec2 model to ONNX format
Args:
onnx_path: Path to save the ONNX model
input_length: Length of input audio (samples)
opset_version: ONNX opset version
Returns:
Path to the saved ONNX model
"""
print(f"Converting model to ONNX format...")
# Create dummy input
dummy_input = torch.randn(1, input_length, dtype=torch.float32)
# Input names and dynamic axes
input_names = ["input_values"]
output_names = ["logits"]
# Dynamic axes for variable length input
dynamic_axes = {
"input_values": {0: "batch_size", 1: "sequence_length"},
"logits": {0: "batch_size", 1: "sequence_length"}
}
try:
# Disable torch optimizations that may cause ONNX issues
with torch.no_grad():
# Set model to evaluation mode and disable dropout
self.model.eval()
for module in self.model.modules():
if isinstance(module, torch.nn.Dropout):
module.p = 0.0
# Export to ONNX
torch.onnx.export(
self.model,
dummy_input,
onnx_path,
input_names=input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
opset_version=opset_version,
do_constant_folding=True,
verbose=False,
export_params=True,
training=torch.onnx.TrainingMode.EVAL,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX
)
print(f"Model successfully exported to: {onnx_path}")
# Verify the exported model
self._verify_onnx_model(onnx_path, dummy_input)
return onnx_path
except Exception as e:
print(f"Error during ONNX conversion: {e}")
raise
def _verify_onnx_model(self, onnx_path: str, test_input: torch.Tensor):
"""Verify the exported ONNX model"""
print("Verifying ONNX model...")
try:
# Load and check ONNX model
onnx_model = onnx.load(onnx_path)
onnx.checker.check_model(onnx_model)
print("β ONNX model structure is valid")
# Test inference with ONNX Runtime
ort_session = onnxruntime.InferenceSession(onnx_path)
# Get model input/output info
input_name = ort_session.get_inputs()[0].name
output_name = ort_session.get_outputs()[0].name
print(f"β Input name: {input_name}")
print(f"β Output name: {output_name}")
# Run inference
ort_inputs = {input_name: test_input.numpy()}
ort_outputs = ort_session.run([output_name], ort_inputs)
# Compare with original PyTorch model
with torch.no_grad():
torch_output = self.model(test_input)
torch_logits = torch_output.logits
# Check output similarity
onnx_logits = ort_outputs[0]
max_diff = np.max(np.abs(torch_logits.numpy() - onnx_logits))
print(f"β Maximum difference between PyTorch and ONNX: {max_diff:.6f}")
if max_diff < 1e-4:
print("β ONNX model verification successful!")
else:
print("β Warning: Large difference detected between models")
except Exception as e:
print(f"Error during verification: {e}")
raise
class Wav2Vec2ONNXInference:
"""ONNX inference class for Wav2Vec2"""
def __init__(self, onnx_path: str, processor_name: str = "facebook/wav2vec2-base-960h"):
"""Initialize ONNX inference"""
print(f"Loading ONNX model from: {onnx_path}")
# Load processor for tokenization
self.processor = Wav2Vec2Processor.from_pretrained(processor_name)
# Create ONNX Runtime session
self.session = onnxruntime.InferenceSession(onnx_path)
self.input_name = self.session.get_inputs()[0].name
self.output_name = self.session.get_outputs()[0].name
self.sample_rate = 16000
print("ONNX model loaded successfully")
def transcribe(self, audio_path: str) -> Dict:
"""Transcribe audio using ONNX model"""
try:
# Load audio
speech, sr = librosa.load(audio_path, sr=self.sample_rate)
# Prepare input
input_values = self.processor(
speech,
sampling_rate=self.sample_rate,
return_tensors="np"
).input_values
# Run ONNX inference
ort_inputs = {self.input_name: input_values}
ort_outputs = self.session.run([self.output_name], ort_inputs)
logits = ort_outputs[0]
# Decode predictions
predicted_ids = np.argmax(logits, axis=-1)
transcription = self.processor.batch_decode(predicted_ids)[0]
# Calculate confidence scores
confidence_scores = np.max(self._softmax(logits), axis=-1)[0]
return {
"transcription": transcription,
"confidence_scores": confidence_scores[:100].tolist(), # Limit for JSON
"predicted_ids": predicted_ids[0].tolist()
}
except Exception as e:
print(f"Transcription error: {e}")
return {
"transcription": "",
"confidence_scores": [],
"predicted_ids": []
}
def _softmax(self, x):
"""Apply softmax to logits"""
exp_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
return exp_x / np.sum(exp_x, axis=-1, keepdims=True)
# Example usage and testing
def main():
"""Example usage of the converter"""
# Method 1: Try standard conversion
try:
print("Method 1: Standard conversion...")
converter = Wav2Vec2ONNXConverter("facebook/wav2vec2-base-960h")
onnx_path = converter.convert_to_onnx(
onnx_path="wav2vec2_asr.onnx",
input_length=160000, # 10 seconds
opset_version=14 # Updated to version 14 for compatibility
)
print("β Standard conversion successful!")
except Exception as e:
print(f"β Standard conversion failed: {e}")
print("\nMethod 2: Trying fallback approach...")
try:
# Method 2: Use compatible model creation
model, processor = create_compatible_model("facebook/wav2vec2-base-960h")
onnx_path = export_with_fallback(
model,
processor,
"wav2vec2_asr_fallback.onnx",
input_length=160000
)
print("β Fallback conversion successful!")
except Exception as e2:
print(f"β All conversion methods failed: {e2}")
return
# Test ONNX inference
print("\nTesting ONNX inference...")
try:
onnx_inference = Wav2Vec2ONNXInference(onnx_path)
print("β ONNX model loaded successfully for inference")
# Create a test audio file (or use your own)
# result = onnx_inference.transcribe("test_audio.wav")
# print("Transcription:", result["transcription"])
except Exception as e:
print(f"β ONNX inference test failed: {e}")
print("Conversion process completed!")
# Additional utility functions
def create_compatible_model(model_name: str = "facebook/wav2vec2-base-960h"):
"""Create a Wav2Vec2 model compatible with ONNX export"""
from transformers import Wav2Vec2Config
# Load config and modify for ONNX compatibility
config = Wav2Vec2Config.from_pretrained(model_name)
# Disable features that may cause ONNX issues
if hasattr(config, 'use_flash_attention_2'):
config.use_flash_attention_2 = False
if hasattr(config, 'torch_dtype'):
config.torch_dtype = torch.float32
# Load model with modified config
model = Wav2Vec2ForCTC.from_pretrained(model_name, config=config, torch_dtype=torch.float32)
processor = Wav2Vec2Processor.from_pretrained(model_name)
return model, processor
def export_with_fallback(model, processor, onnx_path: str, input_length: int = 160000):
"""Export model with fallback options for different opset versions"""
dummy_input = torch.randn(1, input_length, dtype=torch.float32)
input_names = ["input_values"]
output_names = ["logits"]
dynamic_axes = {
"input_values": {0: "batch_size", 1: "sequence_length"},
"logits": {0: "batch_size", 1: "sequence_length"}
}
# Try different opset versions
opset_versions = [14, 13, 12, 11]
for opset_version in opset_versions:
try:
print(f"Trying ONNX export with opset version {opset_version}...")
with torch.no_grad():
model.eval()
# Disable all dropouts
for module in model.modules():
if isinstance(module, torch.nn.Dropout):
module.p = 0.0
torch.onnx.export(
model,
dummy_input,
onnx_path,
input_names=input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
opset_version=opset_version,
do_constant_folding=True,
verbose=False,
export_params=True,
training=torch.onnx.TrainingMode.EVAL
)
print(f"β Successfully exported with opset version {opset_version}")
return onnx_path
except Exception as e:
print(f"β Failed with opset {opset_version}: {str(e)[:100]}...")
continue
raise Exception("Failed to export with all attempted opset versions")
def optimize_onnx_model(onnx_path: str, optimized_path: str = None):
"""Optimize ONNX model for inference"""
try:
from onnxruntime.tools import optimizer
if optimized_path is None:
optimized_path = onnx_path.replace(".onnx", "_optimized.onnx")
# Optimize model
opt_model = optimizer.optimize_model(
onnx_path,
model_type="bert", # Similar architecture
num_heads=12,
hidden_size=768
)
opt_model.save_model_to_file(optimized_path)
print(f"Optimized model saved to: {optimized_path}")
return optimized_path
except ImportError:
print("ONNX Runtime tools not available for optimization")
return onnx_path
except Exception as e:
print(f"Optimization error: {e}")
return onnx_path
def compare_models(original_converter, onnx_inference, test_audio_path: str):
"""Compare PyTorch and ONNX model outputs"""
print("Comparing PyTorch vs ONNX outputs...")
# PyTorch inference
torch_result = original_converter.transcribe_to_characters(test_audio_path)
# ONNX inference
onnx_result = onnx_inference.transcribe(test_audio_path)
print(f"PyTorch transcription: {torch_result['character_transcript']}")
print(f"ONNX transcription: {onnx_result['transcription']}")
# Compare similarity
if torch_result['character_transcript'] == onnx_result['transcription']:
print("β Transcriptions match exactly!")
else:
print("β Transcriptions differ")
if __name__ == "__main__":
main() |