Spaces:
Sleeping
Sleeping
File size: 22,143 Bytes
5d88ac1 54a64d4 c5ca6dc 5d88ac1 54a64d4 5d88ac1 54a64d4 5d88ac1 54a64d4 5d88ac1 54a64d4 5d88ac1 54a64d4 5d88ac1 54a64d4 c5ca6dc 5d88ac1 54a64d4 5d88ac1 b9c5d04 85fa45c 54a64d4 85fa45c 54a64d4 5d88ac1 54a64d4 5d88ac1 54a64d4 5d88ac1 54a64d4 b9c5d04 c5ca6dc 5d88ac1 c5ca6dc b9c5d04 85fa45c 5d88ac1 85fa45c 5d88ac1 85fa45c b9c5d04 c5ca6dc 85fa45c c5ca6dc b9c5d04 54a64d4 85fa45c 5d88ac1 b9c5d04 5d88ac1 b9c5d04 5d88ac1 85fa45c b9c5d04 54a64d4 b9c5d04 85fa45c c5ca6dc 5d88ac1 85fa45c b9c5d04 85fa45c c5ca6dc 5d88ac1 c5ca6dc 5d88ac1 54a64d4 5d88ac1 c5ca6dc 5d88ac1 c5ca6dc 5d88ac1 c5ca6dc b9c5d04 85fa45c 5d88ac1 85fa45c b9c5d04 c5ca6dc 85fa45c c5ca6dc 5d88ac1 c5ca6dc 5d88ac1 54a64d4 5d88ac1 c5ca6dc 5d88ac1 c5ca6dc 5d88ac1 c5ca6dc 5d88ac1 54a64d4 5d88ac1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
# import torch
# from transformers import (
# AutoModelForCTC,
# AutoProcessor,
# Wav2Vec2Processor,
# Wav2Vec2ForCTC,
# )
# import onnxruntime as rt
# import numpy as np
# import librosa
# import warnings
# import os
# warnings.filterwarnings("ignore")
# # Available Wave2Vec2 models
# WAVE2VEC2_MODELS = {
# "english_large": "jonatasgrosman/wav2vec2-large-xlsr-53-english",
# "multilingual": "facebook/wav2vec2-large-xlsr-53",
# "english_960h": "facebook/wav2vec2-large-960h-lv60-self",
# "base_english": "facebook/wav2vec2-base-960h",
# "large_english": "facebook/wav2vec2-large-960h",
# "xlsr_english": "jonatasgrosman/wav2vec2-large-xlsr-53-english",
# "xlsr_multilingual": "facebook/wav2vec2-large-xlsr-53"
# }
# # Default model
# DEFAULT_MODEL = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
# def get_available_models():
# """Return dictionary of available Wave2Vec2 models"""
# return WAVE2VEC2_MODELS.copy()
# def get_model_name(model_key=None):
# """
# Get model name from key or return default
# Args:
# model_key: Key from WAVE2VEC2_MODELS or full model name
# Returns:
# str: Full model name
# """
# if model_key is None:
# return DEFAULT_MODEL
# if model_key in WAVE2VEC2_MODELS:
# return WAVE2VEC2_MODELS[model_key]
# # If it's already a full model name, return as is
# return model_key
# class Wave2Vec2Inference:
# def __init__(self, model_name=None, use_gpu=True):
# # Get the actual model name using helper function
# self.model_name = get_model_name(model_name)
# # Auto-detect device
# if use_gpu:
# if torch.backends.mps.is_available():
# self.device = "mps"
# elif torch.cuda.is_available():
# self.device = "cuda"
# else:
# self.device = "cpu"
# else:
# self.device = "cpu"
# print(f"Using device: {self.device}")
# print(f"Loading model: {self.model_name}")
# # Check if model is XLSR and use appropriate processor/model
# is_xlsr = "xlsr" in self.model_name.lower()
# if is_xlsr:
# print("Using Wav2Vec2Processor and Wav2Vec2ForCTC for XLSR model")
# self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)
# self.model = Wav2Vec2ForCTC.from_pretrained(self.model_name)
# else:
# print("Using AutoProcessor and AutoModelForCTC")
# self.processor = AutoProcessor.from_pretrained(self.model_name)
# self.model = AutoModelForCTC.from_pretrained(self.model_name)
# self.model.to(self.device)
# self.model.eval()
# # Disable gradients for inference
# torch.set_grad_enabled(False)
# def buffer_to_text(self, audio_buffer):
# if len(audio_buffer) == 0:
# return ""
# # Convert to tensor
# if isinstance(audio_buffer, np.ndarray):
# audio_tensor = torch.from_numpy(audio_buffer).float()
# else:
# audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)
# # Process audio
# inputs = self.processor(
# audio_tensor,
# sampling_rate=16_000,
# return_tensors="pt",
# padding=True,
# )
# # Move to device
# input_values = inputs.input_values.to(self.device)
# attention_mask = (
# inputs.attention_mask.to(self.device)
# if "attention_mask" in inputs
# else None
# )
# # Inference
# with torch.no_grad():
# if attention_mask is not None:
# logits = self.model(input_values, attention_mask=attention_mask).logits
# else:
# logits = self.model(input_values).logits
# # Decode
# predicted_ids = torch.argmax(logits, dim=-1)
# if self.device != "cpu":
# predicted_ids = predicted_ids.cpu()
# transcription = self.processor.batch_decode(predicted_ids)[0]
# return transcription.lower().strip()
# def file_to_text(self, filename):
# try:
# audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
# return self.buffer_to_text(audio_input)
# except Exception as e:
# print(f"Error loading audio file {filename}: {e}")
# return ""
# class Wave2Vec2ONNXInference:
# def __init__(self, model_name=None, onnx_path=None, use_gpu=True):
# # Get the actual model name using helper function
# self.model_name = get_model_name(model_name)
# print(f"Loading ONNX model: {self.model_name}")
# # Always use Wav2Vec2Processor for ONNX (works for all models)
# self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)
# # Setup ONNX Runtime
# options = rt.SessionOptions()
# options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
# # Choose providers based on GPU availability
# providers = []
# if use_gpu and rt.get_available_providers():
# if "CUDAExecutionProvider" in rt.get_available_providers():
# providers.append("CUDAExecutionProvider")
# providers.append("CPUExecutionProvider")
# self.model = rt.InferenceSession(onnx_path, options, providers=providers)
# self.input_name = self.model.get_inputs()[0].name
# print(f"ONNX model loaded with providers: {self.model.get_providers()}")
# def buffer_to_text(self, audio_buffer):
# if len(audio_buffer) == 0:
# return ""
# # Convert to tensor
# if isinstance(audio_buffer, np.ndarray):
# audio_tensor = torch.from_numpy(audio_buffer).float()
# else:
# audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)
# # Process audio
# inputs = self.processor(
# audio_tensor,
# sampling_rate=16_000,
# return_tensors="np",
# padding=True,
# )
# # ONNX inference
# input_values = inputs.input_values.astype(np.float32)
# onnx_outputs = self.model.run(None, {self.input_name: input_values})[0]
# # Decode
# prediction = np.argmax(onnx_outputs, axis=-1)
# transcription = self.processor.decode(prediction.squeeze().tolist())
# return transcription.lower().strip()
# def file_to_text(self, filename):
# try:
# audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
# return self.buffer_to_text(audio_input)
# except Exception as e:
# print(f"Error loading audio file {filename}: {e}")
# return ""
# def convert_to_onnx(model_id_or_path, onnx_model_name):
# """Convert PyTorch model to ONNX format"""
# print(f"Converting {model_id_or_path} to ONNX...")
# model = Wav2Vec2ForCTC.from_pretrained(model_id_or_path)
# model.eval()
# # Create dummy input
# audio_len = 250000
# dummy_input = torch.randn(1, audio_len, requires_grad=True)
# torch.onnx.export(
# model,
# dummy_input,
# onnx_model_name,
# export_params=True,
# opset_version=14,
# do_constant_folding=True,
# input_names=["input"],
# output_names=["output"],
# dynamic_axes={
# "input": {1: "audio_len"},
# "output": {1: "audio_len"},
# },
# )
# print(f"ONNX model saved to: {onnx_model_name}")
# def quantize_onnx_model(onnx_model_path, quantized_model_path):
# """Quantize ONNX model for faster inference"""
# print("Starting quantization...")
# from onnxruntime.quantization import quantize_dynamic, QuantType
# quantize_dynamic(
# onnx_model_path, quantized_model_path, weight_type=QuantType.QUInt8
# )
# print(f"Quantized model saved to: {quantized_model_path}")
# def export_to_onnx(model_name, quantize=False):
# """
# Export model to ONNX format with optional quantization
# Args:
# model_name: HuggingFace model name
# quantize: Whether to also create quantized version
# Returns:
# tuple: (onnx_path, quantized_path or None)
# """
# onnx_filename = f"{model_name.split('/')[-1]}.onnx"
# convert_to_onnx(model_name, onnx_filename)
# quantized_path = None
# if quantize:
# quantized_path = onnx_filename.replace(".onnx", ".quantized.onnx")
# quantize_onnx_model(onnx_filename, quantized_path)
# return onnx_filename, quantized_path
# def create_inference(
# model_name=None, use_onnx=False, onnx_path=None, use_gpu=True, use_onnx_quantize=False
# ):
# """
# Create optimized inference instance
# Args:
# model_name: Model key from WAVE2VEC2_MODELS or full HuggingFace model name (default: uses DEFAULT_MODEL)
# use_onnx: Whether to use ONNX runtime
# onnx_path: Path to ONNX model file
# use_gpu: Whether to use GPU if available
# use_onnx_quantize: Whether to use quantized ONNX model
# Returns:
# Inference instance
# """
# # Get the actual model name
# actual_model_name = get_model_name(model_name)
# if use_onnx:
# if not onnx_path or not os.path.exists(onnx_path):
# # Convert to ONNX if path not provided or doesn't exist
# onnx_filename = f"{actual_model_name.split('/')[-1]}.onnx"
# convert_to_onnx(actual_model_name, onnx_filename)
# onnx_path = onnx_filename
# if use_onnx_quantize:
# quantized_path = onnx_path.replace(".onnx", ".quantized.onnx")
# if not os.path.exists(quantized_path):
# quantize_onnx_model(onnx_path, quantized_path)
# onnx_path = quantized_path
# print(f"Using ONNX model: {onnx_path}")
# return Wave2Vec2ONNXInference(model_name, onnx_path, use_gpu)
# else:
# print("Using PyTorch model")
# return Wave2Vec2Inference(model_name, use_gpu)
# if __name__ == "__main__":
# import time
# # Display available models
# print("Available Wave2Vec2 models:")
# for key, model_name in get_available_models().items():
# print(f" {key}: {model_name}")
# print(f"\nDefault model: {DEFAULT_MODEL}")
# print()
# # Test with different models
# test_models = ["english_large", "multilingual", "english_960h"]
# test_file = "test.wav"
# if not os.path.exists(test_file):
# print(f"Test file {test_file} not found. Please provide a valid audio file.")
# print("Creating example usage without actual file...")
# # Example usage without file
# print("\n=== Example Usage ===")
# # Using default model
# print("1. Using default model:")
# asr_default = create_inference()
# print(f" Model loaded: {asr_default.model_name}")
# # Using model key
# print("\n2. Using model key 'english_large':")
# asr_key = create_inference("english_large")
# print(f" Model loaded: {asr_key.model_name}")
# # Using full model name
# print("\n3. Using full model name:")
# asr_full = create_inference("facebook/wav2vec2-base-960h")
# print(f" Model loaded: {asr_full.model_name}")
# exit(0)
# # Test different model configurations
# for model_key in test_models:
# print(f"\n=== Testing model: {model_key} ===")
# # Test different configurations
# configs = [
# {"use_onnx": False, "use_gpu": True},
# {"use_onnx": True, "use_gpu": True, "use_onnx_quantize": False},
# ]
# for config in configs:
# print(f"\nConfig: {config}")
# # Create inference instance with model selection
# asr = create_inference(model_key, **config)
# # Warm up
# asr.file_to_text(test_file)
# # Test performance
# times = []
# for i in range(3):
# start_time = time.time()
# text = asr.file_to_text(test_file)
# end_time = time.time()
# execution_time = end_time - start_time
# times.append(execution_time)
# print(f"Run {i+1}: {execution_time:.3f}s - {text[:50]}...")
# avg_time = sum(times) / len(times)
# print(f"Average time: {avg_time:.3f}s")
import torch
from transformers import (
Wav2Vec2ForCTC,
Wav2Vec2Processor,
AutoProcessor,
AutoModelForCTC,
)
import deepspeed
import librosa
import numpy as np
from typing import Optional, List, Union
def get_model_name(model_name: Optional[str] = None) -> str:
"""Helper function to get model name with default fallback"""
if model_name is None:
return "facebook/wav2vec2-large-robust-ft-libri-960h"
return model_name
class Wave2Vec2Inference:
def __init__(
self,
model_name: Optional[str] = None,
use_gpu: bool = True,
use_deepspeed: bool = True,
):
"""
Initialize Wav2Vec2 model for inference with optional DeepSpeed optimization.
Args:
model_name: HuggingFace model name or None for default
use_gpu: Whether to use GPU acceleration
use_deepspeed: Whether to use DeepSpeed optimization
"""
# Get the actual model name using helper function
self.model_name = get_model_name(model_name)
self.use_deepspeed = use_deepspeed
# Auto-detect device
if use_gpu:
if torch.backends.mps.is_available():
self.device = "mps"
elif torch.cuda.is_available():
self.device = "cuda"
else:
self.device = "cpu"
else:
self.device = "cpu"
print(f"Using device: {self.device}")
print(f"Loading model: {self.model_name}")
print(f"DeepSpeed enabled: {self.use_deepspeed}")
# Check if model is XLSR and use appropriate processor/model
is_xlsr = "xlsr" in self.model_name.lower()
if is_xlsr:
print("Using Wav2Vec2Processor and Wav2Vec2ForCTC for XLSR model")
self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)
self.model = Wav2Vec2ForCTC.from_pretrained(self.model_name)
else:
print("Using AutoProcessor and AutoModelForCTC")
self.processor = AutoProcessor.from_pretrained(self.model_name)
self.model = AutoModelForCTC.from_pretrained(self.model_name)
# Initialize DeepSpeed if enabled
if self.use_deepspeed:
self._init_deepspeed()
else:
self.model.to(self.device)
self.model.eval()
self.ds_engine = None
# Disable gradients for inference
torch.set_grad_enabled(False)
def _init_deepspeed(self):
"""Initialize DeepSpeed inference engine"""
try:
# DeepSpeed configuration based on device
if self.device == "cuda":
ds_config = {
"tensor_parallel": {"tp_size": 1},
"dtype": torch.float32,
"replace_with_kernel_inject": True,
"enable_cuda_graph": False,
}
else:
ds_config = {
"tensor_parallel": {"tp_size": 1},
"dtype": torch.float32,
"replace_with_kernel_inject": False,
"enable_cuda_graph": False,
}
print("Initializing DeepSpeed inference engine...")
self.ds_engine = deepspeed.init_inference(self.model, **ds_config)
self.ds_engine.module.to(self.device)
except Exception as e:
print(f"DeepSpeed initialization failed: {e}")
print("Falling back to standard PyTorch inference...")
self.use_deepspeed = False
self.ds_engine = None
self.model.to(self.device)
self.model.eval()
def _get_model(self):
"""Get the appropriate model for inference"""
if self.use_deepspeed and self.ds_engine is not None:
return self.ds_engine.module
return self.model
def buffer_to_text(
self, audio_buffer: Union[np.ndarray, torch.Tensor, List]
) -> str:
"""
Convert audio buffer to text transcription.
Args:
audio_buffer: Audio data as numpy array, tensor, or list
Returns:
str: Transcribed text
"""
if len(audio_buffer) == 0:
return ""
# Convert to tensor
if isinstance(audio_buffer, np.ndarray):
audio_tensor = torch.from_numpy(audio_buffer).float()
elif isinstance(audio_buffer, list):
audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)
else:
audio_tensor = audio_buffer.float()
# Process audio
inputs = self.processor(
audio_tensor,
sampling_rate=16_000,
return_tensors="pt",
padding=True,
)
# Move to device
input_values = inputs.input_values.to(self.device)
attention_mask = (
inputs.attention_mask.to(self.device)
if "attention_mask" in inputs
else None
)
# Get the appropriate model
model = self._get_model()
# Inference
with torch.no_grad():
if attention_mask is not None:
outputs = model(input_values, attention_mask=attention_mask)
else:
outputs = model(input_values)
# Handle different output formats
if hasattr(outputs, "logits"):
logits = outputs.logits
else:
logits = outputs
# Decode
predicted_ids = torch.argmax(logits, dim=-1)
if self.device != "cpu":
predicted_ids = predicted_ids.cpu()
transcription = self.processor.batch_decode(predicted_ids)[0]
return transcription.lower().strip()
def file_to_text(self, filename: str) -> str:
"""
Transcribe audio file to text.
Args:
filename: Path to audio file
Returns:
str: Transcribed text
"""
try:
audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
return self.buffer_to_text(audio_input)
except Exception as e:
print(f"Error loading audio file {filename}: {e}")
return ""
def batch_file_to_text(self, filenames: List[str]) -> List[str]:
"""
Transcribe multiple audio files to text.
Args:
filenames: List of audio file paths
Returns:
List[str]: List of transcribed texts
"""
results = []
for i, filename in enumerate(filenames):
print(f"Processing file {i+1}/{len(filenames)}: {filename}")
transcription = self.file_to_text(filename)
results.append(transcription)
if transcription:
print(f"Transcription: {transcription}")
else:
print("Failed to transcribe")
return results
def transcribe_with_confidence(
self, audio_buffer: Union[np.ndarray, torch.Tensor]
) -> tuple:
"""
Transcribe audio and return confidence scores.
Args:
audio_buffer: Audio data
Returns:
tuple: (transcription, confidence_scores)
"""
if len(audio_buffer) == 0:
return "", []
# Convert to tensor
if isinstance(audio_buffer, np.ndarray):
audio_tensor = torch.from_numpy(audio_buffer).float()
else:
audio_tensor = audio_buffer.float()
# Process audio
inputs = self.processor(
audio_tensor,
sampling_rate=16_000,
return_tensors="pt",
padding=True,
)
input_values = inputs.input_values.to(self.device)
attention_mask = (
inputs.attention_mask.to(self.device)
if "attention_mask" in inputs
else None
)
model = self._get_model()
# Inference
with torch.no_grad():
if attention_mask is not None:
outputs = model(input_values, attention_mask=attention_mask)
else:
outputs = model(input_values)
if hasattr(outputs, "logits"):
logits = outputs.logits
else:
logits = outputs
# Get probabilities and confidence scores
probs = torch.nn.functional.softmax(logits, dim=-1)
predicted_ids = torch.argmax(logits, dim=-1)
# Calculate confidence as max probability for each prediction
max_probs = torch.max(probs, dim=-1)[0]
confidence_scores = max_probs.cpu().numpy().tolist()
if self.device != "cpu":
predicted_ids = predicted_ids.cpu()
transcription = self.processor.batch_decode(predicted_ids)[0]
return transcription.lower().strip(), confidence_scores
def cleanup(self):
"""Clean up resources"""
if hasattr(self, "ds_engine") and self.ds_engine is not None:
del self.ds_engine
if hasattr(self, "model"):
del self.model
if hasattr(self, "processor"):
del self.processor
torch.cuda.empty_cache() if torch.cuda.is_available() else None
def __del__(self):
"""Destructor to clean up resources"""
self.cleanup()
|