Spaces:
Sleeping
Sleeping
File size: 8,944 Bytes
c5ca6dc b9c5d04 c5ca6dc 85fa45c c5ca6dc b9c5d04 85fa45c b9c5d04 c5ca6dc 85fa45c b9c5d04 c5ca6dc b9c5d04 85fa45c b9c5d04 c5ca6dc 85fa45c c5ca6dc b9c5d04 85fa45c b9c5d04 85fa45c b9c5d04 85fa45c c5ca6dc 85fa45c b9c5d04 85fa45c c5ca6dc b9c5d04 c5ca6dc 85fa45c b9c5d04 c5ca6dc 85fa45c b9c5d04 85fa45c b9c5d04 85fa45c b9c5d04 85fa45c c5ca6dc b9c5d04 85fa45c b9c5d04 c5ca6dc 85fa45c c5ca6dc b9c5d04 85fa45c b9c5d04 85fa45c b9c5d04 c5ca6dc 85fa45c c5ca6dc 85fa45c b9c5d04 85fa45c c5ca6dc b9c5d04 c5ca6dc b9c5d04 c5ca6dc b9c5d04 c5ca6dc b9c5d04 c5ca6dc b9c5d04 c5ca6dc b9c5d04 c5ca6dc b9c5d04 c5ca6dc b9c5d04 c5ca6dc b9c5d04 c5ca6dc b9c5d04 c5ca6dc b9c5d04 c5ca6dc 85fa45c b9c5d04 85fa45c b9c5d04 85fa45c b9c5d04 85fa45c b9c5d04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import torch
from transformers import AutoModelForCTC, AutoProcessor, Wav2Vec2Processor, Wav2Vec2ForCTC
import onnxruntime as rt
import numpy as np
import librosa
import warnings
import os
warnings.filterwarnings("ignore")
class Wave2Vec2Inference:
def __init__(self, model_name, use_gpu=True):
# Auto-detect device
if use_gpu:
if torch.backends.mps.is_available():
self.device = "mps"
elif torch.cuda.is_available():
self.device = "cuda"
else:
self.device = "cpu"
else:
self.device = "cpu"
print(f"Using device: {self.device}")
# Load model and processor
self.processor = AutoProcessor.from_pretrained(model_name)
self.model = AutoModelForCTC.from_pretrained(model_name)
self.model.to(self.device)
self.model.eval()
# Disable gradients for inference
torch.set_grad_enabled(False)
def buffer_to_text(self, audio_buffer):
if len(audio_buffer) == 0:
return ""
# Convert to tensor
if isinstance(audio_buffer, np.ndarray):
audio_tensor = torch.from_numpy(audio_buffer).float()
else:
audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)
# Process audio
inputs = self.processor(
audio_tensor,
sampling_rate=16_000,
return_tensors="pt",
padding=True,
)
# Move to device
input_values = inputs.input_values.to(self.device)
attention_mask = inputs.attention_mask.to(self.device) if "attention_mask" in inputs else None
# Inference
with torch.no_grad():
if attention_mask is not None:
logits = self.model(input_values, attention_mask=attention_mask).logits
else:
logits = self.model(input_values).logits
# Decode
predicted_ids = torch.argmax(logits, dim=-1)
if self.device != "cpu":
predicted_ids = predicted_ids.cpu()
transcription = self.processor.batch_decode(predicted_ids)[0]
return transcription.lower().strip()
def file_to_text(self, filename):
try:
audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
return self.buffer_to_text(audio_input)
except Exception as e:
print(f"Error loading audio file {filename}: {e}")
return ""
class Wave2Vec2ONNXInference:
def __init__(self, model_name, onnx_path, use_gpu=True):
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
# Setup ONNX Runtime
options = rt.SessionOptions()
options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
# Choose providers based on GPU availability
providers = []
if use_gpu and rt.get_available_providers():
if 'CUDAExecutionProvider' in rt.get_available_providers():
providers.append('CUDAExecutionProvider')
providers.append('CPUExecutionProvider')
self.model = rt.InferenceSession(onnx_path, options, providers=providers)
self.input_name = self.model.get_inputs()[0].name
print(f"ONNX model loaded with providers: {self.model.get_providers()}")
def buffer_to_text(self, audio_buffer):
if len(audio_buffer) == 0:
return ""
# Convert to tensor
if isinstance(audio_buffer, np.ndarray):
audio_tensor = torch.from_numpy(audio_buffer).float()
else:
audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)
# Process audio
inputs = self.processor(
audio_tensor,
sampling_rate=16_000,
return_tensors="np",
padding=True,
)
# ONNX inference
input_values = inputs.input_values.astype(np.float32)
onnx_outputs = self.model.run(None, {self.input_name: input_values})[0]
# Decode
prediction = np.argmax(onnx_outputs, axis=-1)
transcription = self.processor.decode(prediction.squeeze().tolist())
return transcription.lower().strip()
def file_to_text(self, filename):
try:
audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
return self.buffer_to_text(audio_input)
except Exception as e:
print(f"Error loading audio file {filename}: {e}")
return ""
def convert_to_onnx(model_id_or_path, onnx_model_name):
"""Convert PyTorch model to ONNX format"""
print(f"Converting {model_id_or_path} to ONNX...")
model = Wav2Vec2ForCTC.from_pretrained(model_id_or_path)
model.eval()
# Create dummy input
audio_len = 250000
dummy_input = torch.randn(1, audio_len, requires_grad=True)
torch.onnx.export(
model,
dummy_input,
onnx_model_name,
export_params=True,
opset_version=14,
do_constant_folding=True,
input_names=["input"],
output_names=["output"],
dynamic_axes={
"input": {1: "audio_len"},
"output": {1: "audio_len"},
},
)
print(f"ONNX model saved to: {onnx_model_name}")
def quantize_onnx_model(onnx_model_path, quantized_model_path):
"""Quantize ONNX model for faster inference"""
print("Starting quantization...")
from onnxruntime.quantization import quantize_dynamic, QuantType
quantize_dynamic(
onnx_model_path,
quantized_model_path,
weight_type=QuantType.QUInt8
)
print(f"Quantized model saved to: {quantized_model_path}")
def export_to_onnx(model_name, quantize=False):
"""
Export model to ONNX format with optional quantization
Args:
model_name: HuggingFace model name
quantize: Whether to also create quantized version
Returns:
tuple: (onnx_path, quantized_path or None)
"""
onnx_filename = f"{model_name.split('/')[-1]}.onnx"
convert_to_onnx(model_name, onnx_filename)
quantized_path = None
if quantize:
quantized_path = onnx_filename.replace('.onnx', '.quantized.onnx')
quantize_onnx_model(onnx_filename, quantized_path)
return onnx_filename, quantized_path
def create_inference(model_name, use_onnx=False, onnx_path=None, use_gpu=True, use_onnx_quantize=False):
"""
Create optimized inference instance
Args:
model_name: HuggingFace model name
use_onnx: Whether to use ONNX runtime
onnx_path: Path to ONNX model file
use_gpu: Whether to use GPU if available
use_onnx_quantize: Whether to use quantized ONNX model
Returns:
Inference instance
"""
if use_onnx:
if not onnx_path or not os.path.exists(onnx_path):
# Convert to ONNX if path not provided or doesn't exist
onnx_filename = f"{model_name.split('/')[-1]}.onnx"
convert_to_onnx(model_name, onnx_filename)
onnx_path = onnx_filename
if use_onnx_quantize:
quantized_path = onnx_path.replace('.onnx', '.quantized.onnx')
if not os.path.exists(quantized_path):
quantize_onnx_model(onnx_path, quantized_path)
onnx_path = quantized_path
print(f"Using ONNX model: {onnx_path}")
return Wave2Vec2ONNXInference(model_name, onnx_path, use_gpu)
else:
print("Using PyTorch model")
return Wave2Vec2Inference(model_name, use_gpu)
if __name__ == "__main__":
import time
model_name = "facebook/wav2vec2-large-960h-lv60-self"
test_file = "test.wav"
if not os.path.exists(test_file):
print(f"Test file {test_file} not found. Please provide a valid audio file.")
exit(1)
# Test different configurations
configs = [
{"use_onnx": False, "use_gpu": True},
{"use_onnx": True, "use_gpu": True, "use_onnx_quantize": False},
{"use_onnx": True, "use_gpu": True, "use_onnx_quantize": True},
]
for config in configs:
print(f"\n=== Testing config: {config} ===")
# Create inference instance
asr = create_inference(model_name, **config)
# Warm up
asr.file_to_text(test_file)
# Test performance
times = []
for i in range(5):
start_time = time.time()
text = asr.file_to_text(test_file)
end_time = time.time()
execution_time = end_time - start_time
times.append(execution_time)
print(f"Run {i+1}: {execution_time:.3f}s - {text[:50]}...")
avg_time = sum(times) / len(times)
print(f"Average time: {avg_time:.3f}s") |