File size: 8,944 Bytes
c5ca6dc
b9c5d04
c5ca6dc
 
 
85fa45c
 
 
c5ca6dc
 
 
b9c5d04
 
85fa45c
 
 
 
 
 
 
 
 
 
 
 
b9c5d04
 
c5ca6dc
 
85fa45c
 
b9c5d04
 
c5ca6dc
 
 
 
 
b9c5d04
85fa45c
 
 
 
 
b9c5d04
c5ca6dc
85fa45c
c5ca6dc
 
 
 
 
b9c5d04
 
 
85fa45c
b9c5d04
 
 
 
 
 
85fa45c
b9c5d04
 
 
 
 
 
85fa45c
c5ca6dc
 
85fa45c
b9c5d04
85fa45c
 
 
 
c5ca6dc
 
 
b9c5d04
c5ca6dc
85fa45c
b9c5d04
c5ca6dc
 
85fa45c
b9c5d04
85fa45c
b9c5d04
 
 
 
85fa45c
b9c5d04
85fa45c
 
c5ca6dc
 
 
 
 
b9c5d04
85fa45c
 
 
 
 
b9c5d04
c5ca6dc
85fa45c
c5ca6dc
 
 
 
 
b9c5d04
85fa45c
b9c5d04
85fa45c
b9c5d04
c5ca6dc
 
85fa45c
c5ca6dc
 
85fa45c
b9c5d04
85fa45c
 
 
 
c5ca6dc
 
 
b9c5d04
 
c5ca6dc
b9c5d04
 
 
c5ca6dc
b9c5d04
c5ca6dc
 
b9c5d04
 
 
 
 
 
 
 
c5ca6dc
b9c5d04
c5ca6dc
 
 
b9c5d04
c5ca6dc
 
 
b9c5d04
c5ca6dc
 
 
 
b9c5d04
 
 
c5ca6dc
 
 
 
b9c5d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ca6dc
b9c5d04
 
 
 
c5ca6dc
 
b9c5d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ca6dc
85fa45c
b9c5d04
 
 
 
85fa45c
b9c5d04
85fa45c
 
 
 
b9c5d04
 
 
 
 
 
85fa45c
b9c5d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import torch
from transformers import AutoModelForCTC, AutoProcessor, Wav2Vec2Processor, Wav2Vec2ForCTC
import onnxruntime as rt
import numpy as np
import librosa
import warnings
import os
warnings.filterwarnings("ignore")


class Wave2Vec2Inference:
    def __init__(self, model_name, use_gpu=True):
        # Auto-detect device
        if use_gpu:
            if torch.backends.mps.is_available():
                self.device = "mps"
            elif torch.cuda.is_available():
                self.device = "cuda"
            else:
                self.device = "cpu"
        else:
            self.device = "cpu"
        
        print(f"Using device: {self.device}")
        
        # Load model and processor
        self.processor = AutoProcessor.from_pretrained(model_name)
        self.model = AutoModelForCTC.from_pretrained(model_name)
        self.model.to(self.device)
        self.model.eval()
        
        # Disable gradients for inference
        torch.set_grad_enabled(False)

    def buffer_to_text(self, audio_buffer):
        if len(audio_buffer) == 0:
            return ""

        # Convert to tensor
        if isinstance(audio_buffer, np.ndarray):
            audio_tensor = torch.from_numpy(audio_buffer).float()
        else:
            audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)

        # Process audio
        inputs = self.processor(
            audio_tensor,
            sampling_rate=16_000,
            return_tensors="pt",
            padding=True,
        )

        # Move to device
        input_values = inputs.input_values.to(self.device)
        attention_mask = inputs.attention_mask.to(self.device) if "attention_mask" in inputs else None

        # Inference
        with torch.no_grad():
            if attention_mask is not None:
                logits = self.model(input_values, attention_mask=attention_mask).logits
            else:
                logits = self.model(input_values).logits

        # Decode
        predicted_ids = torch.argmax(logits, dim=-1)
        if self.device != "cpu":
            predicted_ids = predicted_ids.cpu()
        
        transcription = self.processor.batch_decode(predicted_ids)[0]
        return transcription.lower().strip()

    def file_to_text(self, filename):
        try:
            audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
            return self.buffer_to_text(audio_input)
        except Exception as e:
            print(f"Error loading audio file {filename}: {e}")
            return ""


class Wave2Vec2ONNXInference:
    def __init__(self, model_name, onnx_path, use_gpu=True):
        self.processor = Wav2Vec2Processor.from_pretrained(model_name)
        
        # Setup ONNX Runtime
        options = rt.SessionOptions()
        options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
        
        # Choose providers based on GPU availability
        providers = []
        if use_gpu and rt.get_available_providers():
            if 'CUDAExecutionProvider' in rt.get_available_providers():
                providers.append('CUDAExecutionProvider')
        providers.append('CPUExecutionProvider')
        
        self.model = rt.InferenceSession(onnx_path, options, providers=providers)
        self.input_name = self.model.get_inputs()[0].name
        print(f"ONNX model loaded with providers: {self.model.get_providers()}")

    def buffer_to_text(self, audio_buffer):
        if len(audio_buffer) == 0:
            return ""

        # Convert to tensor
        if isinstance(audio_buffer, np.ndarray):
            audio_tensor = torch.from_numpy(audio_buffer).float()
        else:
            audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)

        # Process audio
        inputs = self.processor(
            audio_tensor,
            sampling_rate=16_000,
            return_tensors="np",
            padding=True,
        )

        # ONNX inference
        input_values = inputs.input_values.astype(np.float32)
        onnx_outputs = self.model.run(None, {self.input_name: input_values})[0]
        
        # Decode
        prediction = np.argmax(onnx_outputs, axis=-1)
        transcription = self.processor.decode(prediction.squeeze().tolist())
        return transcription.lower().strip()

    def file_to_text(self, filename):
        try:
            audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
            return self.buffer_to_text(audio_input)
        except Exception as e:
            print(f"Error loading audio file {filename}: {e}")
            return ""


def convert_to_onnx(model_id_or_path, onnx_model_name):
    """Convert PyTorch model to ONNX format"""
    print(f"Converting {model_id_or_path} to ONNX...")
    model = Wav2Vec2ForCTC.from_pretrained(model_id_or_path)
    model.eval()
    
    # Create dummy input
    audio_len = 250000
    dummy_input = torch.randn(1, audio_len, requires_grad=True)

    torch.onnx.export(
        model,
        dummy_input,
        onnx_model_name,
        export_params=True,
        opset_version=14,
        do_constant_folding=True,
        input_names=["input"],
        output_names=["output"],
        dynamic_axes={
            "input": {1: "audio_len"},
            "output": {1: "audio_len"},
        },
    )
    print(f"ONNX model saved to: {onnx_model_name}")


def quantize_onnx_model(onnx_model_path, quantized_model_path):
    """Quantize ONNX model for faster inference"""
    print("Starting quantization...")
    from onnxruntime.quantization import quantize_dynamic, QuantType

    quantize_dynamic(
        onnx_model_path, 
        quantized_model_path, 
        weight_type=QuantType.QUInt8
    )
    print(f"Quantized model saved to: {quantized_model_path}")


def export_to_onnx(model_name, quantize=False):
    """
    Export model to ONNX format with optional quantization
    
    Args:
        model_name: HuggingFace model name
        quantize: Whether to also create quantized version
        
    Returns:
        tuple: (onnx_path, quantized_path or None)
    """
    onnx_filename = f"{model_name.split('/')[-1]}.onnx"
    convert_to_onnx(model_name, onnx_filename)
    
    quantized_path = None
    if quantize:
        quantized_path = onnx_filename.replace('.onnx', '.quantized.onnx')
        quantize_onnx_model(onnx_filename, quantized_path)
    
    return onnx_filename, quantized_path


def create_inference(model_name, use_onnx=False, onnx_path=None, use_gpu=True, use_onnx_quantize=False):
    """
    Create optimized inference instance
    
    Args:
        model_name: HuggingFace model name
        use_onnx: Whether to use ONNX runtime
        onnx_path: Path to ONNX model file
        use_gpu: Whether to use GPU if available
        use_onnx_quantize: Whether to use quantized ONNX model
        
    Returns:
        Inference instance
    """
    if use_onnx:
        if not onnx_path or not os.path.exists(onnx_path):
            # Convert to ONNX if path not provided or doesn't exist
            onnx_filename = f"{model_name.split('/')[-1]}.onnx"
            convert_to_onnx(model_name, onnx_filename)
            onnx_path = onnx_filename
            
        if use_onnx_quantize:
            quantized_path = onnx_path.replace('.onnx', '.quantized.onnx')
            if not os.path.exists(quantized_path):
                quantize_onnx_model(onnx_path, quantized_path)
            onnx_path = quantized_path
            
        print(f"Using ONNX model: {onnx_path}")
        return Wave2Vec2ONNXInference(model_name, onnx_path, use_gpu)
    else:
        print("Using PyTorch model")
        return Wave2Vec2Inference(model_name, use_gpu)


if __name__ == "__main__":
    import time
    
    model_name = "facebook/wav2vec2-large-960h-lv60-self"
    test_file = "test.wav"
    
    if not os.path.exists(test_file):
        print(f"Test file {test_file} not found. Please provide a valid audio file.")
        exit(1)
    
    # Test different configurations
    configs = [
        {"use_onnx": False, "use_gpu": True},
        {"use_onnx": True, "use_gpu": True, "use_onnx_quantize": False},
        {"use_onnx": True, "use_gpu": True, "use_onnx_quantize": True},
    ]
    
    for config in configs:
        print(f"\n=== Testing config: {config} ===")
        
        # Create inference instance
        asr = create_inference(model_name, **config)
        
        # Warm up
        asr.file_to_text(test_file)
        
        # Test performance
        times = []
        for i in range(5):
            start_time = time.time()
            text = asr.file_to_text(test_file)
            end_time = time.time()
            execution_time = end_time - start_time
            times.append(execution_time)
            print(f"Run {i+1}: {execution_time:.3f}s - {text[:50]}...")
        
        avg_time = sum(times) / len(times)
        print(f"Average time: {avg_time:.3f}s")