Run_code_api / src /AI_Models /wave2vec_inference.py
ABAO77's picture
feat: refactor Wav2Vec2 character ASR to support quantization and improve model loading
c5ca6dc
raw
history blame
6.53 kB
import torch
from transformers import AutoModelForCTC, AutoProcessor, Wav2Vec2Processor
import onnxruntime as rt
import numpy as np
import librosa
class Wave2Vec2Inference:
def __init__(self, model_name, hotwords=[], use_lm_if_possible=True, use_gpu=True):
self.device = "cpu"
if use_lm_if_possible:
self.processor = AutoProcessor.from_pretrained(model_name)
else:
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
self.model = AutoModelForCTC.from_pretrained(model_name)
self.model.to(self.device)
self.hotwords = hotwords
self.use_lm_if_possible = use_lm_if_possible
def buffer_to_text(self, audio_buffer):
if len(audio_buffer) == 0:
return ""
inputs = self.processor(
torch.tensor(audio_buffer),
sampling_rate=16_000,
return_tensors="pt",
padding=True,
)
with torch.no_grad():
logits = self.model(
inputs.input_values.to(self.device),
attention_mask=inputs.attention_mask.to(self.device),
).logits
if hasattr(self.processor, "decoder") and self.use_lm_if_possible:
transcription = self.processor.decode(
logits[0].cpu().numpy(),
hotwords=self.hotwords,
# hotword_weight=self.hotword_weight,
output_word_offsets=True,
)
confidence = transcription.lm_score / len(transcription.text.split(" "))
transcription: str = transcription.text
else:
predicted_ids = torch.argmax(logits, dim=-1)
transcription: str = self.processor.batch_decode(predicted_ids)[0]
# confidence = self.confidence_score(logits, predicted_ids)
return transcription.lower()
def confidence_score(self, logits, predicted_ids):
scores = torch.nn.functional.softmax(logits, dim=-1)
pred_scores = scores.gather(-1, predicted_ids.unsqueeze(-1))[:, :, 0]
mask = torch.logical_and(
predicted_ids.not_equal(self.processor.tokenizer.word_delimiter_token_id),
predicted_ids.not_equal(self.processor.tokenizer.pad_token_id),
)
character_scores = pred_scores.masked_select(mask)
total_average = torch.sum(character_scores) / len(character_scores)
return total_average
def file_to_text(self, filename):
import librosa
audio_input, samplerate = librosa.load(filename, sr=16000)
return self.buffer_to_text(audio_input)
class Wave2Vec2ONNXInference:
def __init__(self, model_name, onnx_path):
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
# self.model = Wav2Vec2ForCTC.from_pretrained(model_name)
options = rt.SessionOptions()
options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
self.model = rt.InferenceSession(onnx_path, options)
def buffer_to_text(self, audio_buffer):
if len(audio_buffer) == 0:
return ""
inputs = self.processor(
torch.tensor(audio_buffer),
sampling_rate=16_000,
return_tensors="np",
padding=True,
)
input_values = inputs.input_values
onnx_outputs = self.model.run(
None, {self.model.get_inputs()[0].name: input_values}
)[0]
prediction = np.argmax(onnx_outputs, axis=-1)
transcription = self.processor.decode(prediction.squeeze().tolist())
return transcription.lower()
def file_to_text(self, filename):
audio_input, samplerate = librosa.load(filename, sr=16000)
return self.buffer_to_text(audio_input)
from onnxruntime.quantization.quantize import quantize
from transformers import Wav2Vec2ForCTC
import torch
import argparse
# took that script from: https://github.com/ccoreilly/wav2vec2-service/blob/master/convert_torch_to_onnx.py
def convert_to_onnx(model_id_or_path, onnx_model_name):
print(f"Converting {model_id_or_path} to onnx")
model = Wav2Vec2ForCTC.from_pretrained(model_id_or_path)
audio_len = 250000
x = torch.randn(1, audio_len, requires_grad=True)
torch.onnx.export(
model, # model being run
x, # model input (or a tuple for multiple inputs)
onnx_model_name, # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=14, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
input_names=["input"], # the model's input names
output_names=["output"], # the model's output names
dynamic_axes={
"input": {1: "audio_len"}, # variable length axes
"output": {1: "audio_len"},
},
)
def quantize_onnx_model(onnx_model_path, quantized_model_path):
print("Starting quantization...")
from onnxruntime.quantization import quantize_dynamic, QuantType
quantize_dynamic(
onnx_model_path, quantized_model_path, weight_type=QuantType.QUInt8
)
print(f"Quantized model saved to: {quantized_model_path}")
def export_to_onnx(
model: str = "facebook/wav2vec2-large-960h-lv60-self", quantize: bool = False
):
onnx_model_name = model.split("/")[-1] + ".onnx"
convert_to_onnx(model, onnx_model_name)
if quantize:
quantized_model_name = model.split("/")[-1] + ".quant.onnx"
quantize_onnx_model(onnx_model_name, quantized_model_name)
if __name__ == "__main__":
from loguru import logger
import time
asr = Wave2Vec2Inference("facebook/wav2vec2-large-960h-lv60-self")
# Warm up runs
print("Warming up...")
for i in range(2):
asr.file_to_text("test.wav")
print(f"Warm up {i+1} completed")
# Test runs
print("Running tests...")
times = []
for i in range(10):
start_time = time.time()
text = asr.file_to_text("test.wav")
end_time = time.time()
execution_time = end_time - start_time
times.append(execution_time)
print(f"Test {i+1}: {execution_time:.3f}s - {text}")
# Calculate average time
average_time = sum(times) / len(times)
print(f"\nAverage execution time: {average_time:.3f}s")
print(f"Min time: {min(times):.3f}s")
print(f"Max time: {max(times):.3f}s")