Spaces:
Sleeping
Sleeping
feat: text to speech for AI response
Browse files- requirements.txt +2 -1
- src/agents/lesson_practice_2/prompt.py +1 -0
- src/agents/role_play/__pycache__/prompt.cpython-311.pyc +0 -0
- src/agents/role_play/flow.py +1 -1
- src/agents/role_play/prompt.py +3 -0
- src/agents/role_play/tools.py +1 -1
- src/apis/routes/__pycache__/chat_route.cpython-311.pyc +0 -0
- src/apis/routes/chat_route.py +30 -2
- src/apis/routes/lesson_route.py +30 -2
- src/config/__pycache__/llm.cpython-311.pyc +0 -0
- src/services/tts_service.py +114 -0
requirements.txt
CHANGED
|
@@ -12,4 +12,5 @@ langgraph-swarm
|
|
| 12 |
langchain-google-genai
|
| 13 |
python-dotenv
|
| 14 |
loguru
|
| 15 |
-
python-multipart
|
|
|
|
|
|
| 12 |
langchain-google-genai
|
| 13 |
python-dotenv
|
| 14 |
loguru
|
| 15 |
+
python-multipart
|
| 16 |
+
deepgram-sdk
|
src/agents/lesson_practice_2/prompt.py
CHANGED
|
@@ -18,6 +18,7 @@ I'm **WISE**, your friendly English conversation partner! I create natural, enga
|
|
| 18 |
- **Maximum English practice** for user
|
| 19 |
|
| 20 |
### Immediate Handoff to Teaching Agent When:
|
|
|
|
| 21 |
- User speaks Vietnamese or requests Vietnamese explanation
|
| 22 |
- User asks "How do I say...?" or "What does... mean?"
|
| 23 |
- User makes same error 3+ times
|
|
|
|
| 18 |
- **Maximum English practice** for user
|
| 19 |
|
| 20 |
### Immediate Handoff to Teaching Agent When:
|
| 21 |
+
- If the user initiates the conversation in a language other than English
|
| 22 |
- User speaks Vietnamese or requests Vietnamese explanation
|
| 23 |
- User asks "How do I say...?" or "What does... mean?"
|
| 24 |
- User makes same error 3+ times
|
src/agents/role_play/__pycache__/prompt.cpython-311.pyc
CHANGED
|
Binary files a/src/agents/role_play/__pycache__/prompt.cpython-311.pyc and b/src/agents/role_play/__pycache__/prompt.cpython-311.pyc differ
|
|
|
src/agents/role_play/flow.py
CHANGED
|
@@ -9,7 +9,7 @@ class RolePlayAgent:
|
|
| 9 |
pass
|
| 10 |
|
| 11 |
@staticmethod
|
| 12 |
-
def route_to_active_agent(state: State)
|
| 13 |
if state["active_agent"] == "Roleplay Agent":
|
| 14 |
return "Roleplay Agent"
|
| 15 |
elif state["active_agent"] == "Guiding Agent":
|
|
|
|
| 9 |
pass
|
| 10 |
|
| 11 |
@staticmethod
|
| 12 |
+
def route_to_active_agent(state: State):
|
| 13 |
if state["active_agent"] == "Roleplay Agent":
|
| 14 |
return "Roleplay Agent"
|
| 15 |
elif state["active_agent"] == "Guiding Agent":
|
src/agents/role_play/prompt.py
CHANGED
|
@@ -11,6 +11,8 @@ You are **{your_role}** in an English learning conversation. Create authentic, e
|
|
| 11 |
|
| 12 |
## LANGUAGE DECISION MATRIX
|
| 13 |
|
|
|
|
|
|
|
| 14 |
**CRITICAL RULE: If user uses Vietnamese at any point, immediately handoff to Guiding Agent.**
|
| 15 |
|
| 16 |
### ✅ CONTINUE ROLEPLAY:
|
|
@@ -19,6 +21,7 @@ You are **{your_role}** in an English learning conversation. Create authentic, e
|
|
| 19 |
- Communication intent is clear in English
|
| 20 |
|
| 21 |
### ❌ HANDOFF TO GUIDING AGENT:
|
|
|
|
| 22 |
- User speaks primarily Vietnamese or non-English
|
| 23 |
- User speaks <30% English
|
| 24 |
- User asks for language help in ANY language
|
|
|
|
| 11 |
|
| 12 |
## LANGUAGE DECISION MATRIX
|
| 13 |
|
| 14 |
+
## CRITICAL LANGUAGE RULE:
|
| 15 |
+
**IF USER SPEAKS ANY LANGUAGE OTHER THAN ENGLISH → IMMEDIATELY HAND OFF TO GUIDING AGENT**
|
| 16 |
**CRITICAL RULE: If user uses Vietnamese at any point, immediately handoff to Guiding Agent.**
|
| 17 |
|
| 18 |
### ✅ CONTINUE ROLEPLAY:
|
|
|
|
| 21 |
- Communication intent is clear in English
|
| 22 |
|
| 23 |
### ❌ HANDOFF TO GUIDING AGENT:
|
| 24 |
+
- If the user initiates the conversation in a language other than English
|
| 25 |
- User speaks primarily Vietnamese or non-English
|
| 26 |
- User speaks <30% English
|
| 27 |
- User asks for language help in ANY language
|
src/agents/role_play/tools.py
CHANGED
|
@@ -11,6 +11,6 @@ def function_name(
|
|
| 11 |
"""
|
| 12 |
logger.info(f"Received input: {input}")
|
| 13 |
# Thực hiện các thao tác cần thiết với input
|
| 14 |
-
result = f"Processed: {input}"
|
| 15 |
logger.info(f"Returning result: {result}")
|
| 16 |
return result
|
|
|
|
| 11 |
"""
|
| 12 |
logger.info(f"Received input: {input}")
|
| 13 |
# Thực hiện các thao tác cần thiết với input
|
| 14 |
+
result: str = f"Processed: {input}"
|
| 15 |
logger.info(f"Returning result: {result}")
|
| 16 |
return result
|
src/apis/routes/__pycache__/chat_route.cpython-311.pyc
CHANGED
|
Binary files a/src/apis/routes/__pycache__/chat_route.cpython-311.pyc and b/src/apis/routes/__pycache__/chat_route.cpython-311.pyc differ
|
|
|
src/apis/routes/chat_route.py
CHANGED
|
@@ -9,6 +9,7 @@ from fastapi import (
|
|
| 9 |
from fastapi.responses import JSONResponse, StreamingResponse
|
| 10 |
from src.utils.logger import logger
|
| 11 |
from src.agents.role_play.flow import role_play_agent
|
|
|
|
| 12 |
from pydantic import BaseModel, Field
|
| 13 |
from typing import Dict, Any, Optional
|
| 14 |
from src.agents.role_play.scenarios import get_scenarios
|
|
@@ -144,6 +145,7 @@ async def roleplay_stream(
|
|
| 144 |
),
|
| 145 |
text_message: Optional[str] = Form(None, description="Text message from user"),
|
| 146 |
audio_file: Optional[UploadFile] = File(None, description="Audio file from user"),
|
|
|
|
| 147 |
):
|
| 148 |
"""Send a message (text or audio) to the roleplay agent with streaming response"""
|
| 149 |
logger.info(f"Received streaming roleplay request: {session_id}")
|
|
@@ -214,6 +216,7 @@ async def roleplay_stream(
|
|
| 214 |
|
| 215 |
async def generate_stream():
|
| 216 |
"""Generator function for streaming responses"""
|
|
|
|
| 217 |
try:
|
| 218 |
input_graph = {
|
| 219 |
"messages": [message],
|
|
@@ -242,6 +245,9 @@ async def roleplay_stream(
|
|
| 242 |
content = getattr(message_chunk, 'content', '')
|
| 243 |
|
| 244 |
if content:
|
|
|
|
|
|
|
|
|
|
| 245 |
# Create SSE-formatted response
|
| 246 |
response_data = {
|
| 247 |
"type": "message_chunk",
|
|
@@ -257,8 +263,30 @@ async def roleplay_stream(
|
|
| 257 |
# Small delay to prevent overwhelming the client
|
| 258 |
await asyncio.sleep(0.01)
|
| 259 |
|
| 260 |
-
#
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
yield f"data: {json.dumps(completion_data)}\n\n"
|
| 263 |
|
| 264 |
except Exception as e:
|
|
|
|
| 9 |
from fastapi.responses import JSONResponse, StreamingResponse
|
| 10 |
from src.utils.logger import logger
|
| 11 |
from src.agents.role_play.flow import role_play_agent
|
| 12 |
+
from src.services.tts_service import tts_service
|
| 13 |
from pydantic import BaseModel, Field
|
| 14 |
from typing import Dict, Any, Optional
|
| 15 |
from src.agents.role_play.scenarios import get_scenarios
|
|
|
|
| 145 |
),
|
| 146 |
text_message: Optional[str] = Form(None, description="Text message from user"),
|
| 147 |
audio_file: Optional[UploadFile] = File(None, description="Audio file from user"),
|
| 148 |
+
audio: bool = Form(False, description="Whether to return TTS audio response"),
|
| 149 |
):
|
| 150 |
"""Send a message (text or audio) to the roleplay agent with streaming response"""
|
| 151 |
logger.info(f"Received streaming roleplay request: {session_id}")
|
|
|
|
| 216 |
|
| 217 |
async def generate_stream():
|
| 218 |
"""Generator function for streaming responses"""
|
| 219 |
+
accumulated_content = ""
|
| 220 |
try:
|
| 221 |
input_graph = {
|
| 222 |
"messages": [message],
|
|
|
|
| 245 |
content = getattr(message_chunk, 'content', '')
|
| 246 |
|
| 247 |
if content:
|
| 248 |
+
# Accumulate content for TTS
|
| 249 |
+
accumulated_content += content
|
| 250 |
+
|
| 251 |
# Create SSE-formatted response
|
| 252 |
response_data = {
|
| 253 |
"type": "message_chunk",
|
|
|
|
| 263 |
# Small delay to prevent overwhelming the client
|
| 264 |
await asyncio.sleep(0.01)
|
| 265 |
|
| 266 |
+
# Generate TTS audio if requested
|
| 267 |
+
audio_data = None
|
| 268 |
+
if audio and accumulated_content.strip():
|
| 269 |
+
try:
|
| 270 |
+
logger.info(f"Generating TTS for accumulated content: {len(accumulated_content)} chars")
|
| 271 |
+
audio_result = await tts_service.text_to_speech(accumulated_content)
|
| 272 |
+
if audio_result:
|
| 273 |
+
audio_data = {
|
| 274 |
+
"audio_data": audio_result["audio_data"],
|
| 275 |
+
"mime_type": audio_result["mime_type"],
|
| 276 |
+
"format": audio_result["format"]
|
| 277 |
+
}
|
| 278 |
+
logger.info("TTS audio generated successfully")
|
| 279 |
+
else:
|
| 280 |
+
logger.warning("TTS generation failed")
|
| 281 |
+
except Exception as tts_error:
|
| 282 |
+
logger.error(f"TTS generation error: {str(tts_error)}")
|
| 283 |
+
|
| 284 |
+
# Send completion signal with optional audio
|
| 285 |
+
completion_data = {
|
| 286 |
+
"type": "completion",
|
| 287 |
+
"content": "",
|
| 288 |
+
"audio": audio_data
|
| 289 |
+
}
|
| 290 |
yield f"data: {json.dumps(completion_data)}\n\n"
|
| 291 |
|
| 292 |
except Exception as e:
|
src/apis/routes/lesson_route.py
CHANGED
|
@@ -10,6 +10,7 @@ from fastapi import (
|
|
| 10 |
)
|
| 11 |
from fastapi.responses import JSONResponse, StreamingResponse
|
| 12 |
from src.utils.logger import logger
|
|
|
|
| 13 |
from pydantic import BaseModel, Field
|
| 14 |
from typing import List, Dict, Any, Optional
|
| 15 |
from src.agents.lesson_practice.flow import lesson_practice_agent
|
|
@@ -367,6 +368,7 @@ async def chat_v2_stream(
|
|
| 367 |
),
|
| 368 |
text_message: Optional[str] = Form(None, description="Text message from user"),
|
| 369 |
audio_file: Optional[UploadFile] = File(None, description="Audio file from user"),
|
|
|
|
| 370 |
):
|
| 371 |
"""Send a message (text or audio) to the lesson practice v2 agent with streaming response"""
|
| 372 |
logger.info(f"Received streaming lesson practice v2 request: {session_id}")
|
|
@@ -437,6 +439,7 @@ async def chat_v2_stream(
|
|
| 437 |
|
| 438 |
async def generate_stream():
|
| 439 |
"""Generator function for streaming responses"""
|
|
|
|
| 440 |
try:
|
| 441 |
input_graph = {
|
| 442 |
"messages": [message],
|
|
@@ -465,6 +468,9 @@ async def chat_v2_stream(
|
|
| 465 |
content = getattr(message_chunk, 'content', '')
|
| 466 |
|
| 467 |
if content:
|
|
|
|
|
|
|
|
|
|
| 468 |
# Create SSE-formatted response
|
| 469 |
response_data = {
|
| 470 |
"type": "message_chunk",
|
|
@@ -480,8 +486,30 @@ async def chat_v2_stream(
|
|
| 480 |
# Small delay to prevent overwhelming the client
|
| 481 |
await asyncio.sleep(0.01)
|
| 482 |
|
| 483 |
-
#
|
| 484 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 485 |
yield f"data: {json.dumps(completion_data)}\n\n"
|
| 486 |
|
| 487 |
except Exception as e:
|
|
|
|
| 10 |
)
|
| 11 |
from fastapi.responses import JSONResponse, StreamingResponse
|
| 12 |
from src.utils.logger import logger
|
| 13 |
+
from src.services.tts_service import tts_service
|
| 14 |
from pydantic import BaseModel, Field
|
| 15 |
from typing import List, Dict, Any, Optional
|
| 16 |
from src.agents.lesson_practice.flow import lesson_practice_agent
|
|
|
|
| 368 |
),
|
| 369 |
text_message: Optional[str] = Form(None, description="Text message from user"),
|
| 370 |
audio_file: Optional[UploadFile] = File(None, description="Audio file from user"),
|
| 371 |
+
audio: bool = Form(False, description="Whether to return TTS audio response"),
|
| 372 |
):
|
| 373 |
"""Send a message (text or audio) to the lesson practice v2 agent with streaming response"""
|
| 374 |
logger.info(f"Received streaming lesson practice v2 request: {session_id}")
|
|
|
|
| 439 |
|
| 440 |
async def generate_stream():
|
| 441 |
"""Generator function for streaming responses"""
|
| 442 |
+
accumulated_content = ""
|
| 443 |
try:
|
| 444 |
input_graph = {
|
| 445 |
"messages": [message],
|
|
|
|
| 468 |
content = getattr(message_chunk, 'content', '')
|
| 469 |
|
| 470 |
if content:
|
| 471 |
+
# Accumulate content for TTS
|
| 472 |
+
accumulated_content += content
|
| 473 |
+
|
| 474 |
# Create SSE-formatted response
|
| 475 |
response_data = {
|
| 476 |
"type": "message_chunk",
|
|
|
|
| 486 |
# Small delay to prevent overwhelming the client
|
| 487 |
await asyncio.sleep(0.01)
|
| 488 |
|
| 489 |
+
# Generate TTS audio if requested
|
| 490 |
+
audio_data = None
|
| 491 |
+
if audio and accumulated_content.strip():
|
| 492 |
+
try:
|
| 493 |
+
logger.info(f"Generating TTS for lesson v2 content: {len(accumulated_content)} chars")
|
| 494 |
+
audio_result = await tts_service.text_to_speech(accumulated_content)
|
| 495 |
+
if audio_result:
|
| 496 |
+
audio_data = {
|
| 497 |
+
"audio_data": audio_result["audio_data"],
|
| 498 |
+
"mime_type": audio_result["mime_type"],
|
| 499 |
+
"format": audio_result["format"]
|
| 500 |
+
}
|
| 501 |
+
logger.info("Lesson v2 TTS audio generated successfully")
|
| 502 |
+
else:
|
| 503 |
+
logger.warning("Lesson v2 TTS generation failed")
|
| 504 |
+
except Exception as tts_error:
|
| 505 |
+
logger.error(f"Lesson v2 TTS generation error: {str(tts_error)}")
|
| 506 |
+
|
| 507 |
+
# Send completion signal with optional audio
|
| 508 |
+
completion_data = {
|
| 509 |
+
"type": "completion",
|
| 510 |
+
"content": "",
|
| 511 |
+
"audio": audio_data
|
| 512 |
+
}
|
| 513 |
yield f"data: {json.dumps(completion_data)}\n\n"
|
| 514 |
|
| 515 |
except Exception as e:
|
src/config/__pycache__/llm.cpython-311.pyc
CHANGED
|
Binary files a/src/config/__pycache__/llm.cpython-311.pyc and b/src/config/__pycache__/llm.cpython-311.pyc differ
|
|
|
src/services/tts_service.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Text-to-Speech (TTS) Service using Deepgram API
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import requests
|
| 6 |
+
import os
|
| 7 |
+
import base64
|
| 8 |
+
from src.utils.logger import logger
|
| 9 |
+
from typing import Optional
|
| 10 |
+
|
| 11 |
+
class TTSService:
|
| 12 |
+
"""Service for handling text-to-speech conversion using Deepgram API"""
|
| 13 |
+
|
| 14 |
+
def __init__(self):
|
| 15 |
+
self.api_key = os.getenv("YOUR_DEEPGRAM_API_KEY")
|
| 16 |
+
self.base_url = "https://api.deepgram.com/v1/speak"
|
| 17 |
+
self.default_model = "aura-2-thalia-en"
|
| 18 |
+
|
| 19 |
+
if not self.api_key:
|
| 20 |
+
logger.error("Deepgram API key not found in environment variables")
|
| 21 |
+
raise ValueError("Deepgram API key is required")
|
| 22 |
+
|
| 23 |
+
async def text_to_speech(
|
| 24 |
+
self,
|
| 25 |
+
text: str,
|
| 26 |
+
model: Optional[str] = None,
|
| 27 |
+
format: str = "mp3"
|
| 28 |
+
) -> Optional[dict]:
|
| 29 |
+
"""
|
| 30 |
+
Convert text to speech using Deepgram API
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
text (str): The text to convert to speech
|
| 34 |
+
model (str): The TTS model to use (default: aura-2-thalia-en)
|
| 35 |
+
format (str): Audio format (default: mp3)
|
| 36 |
+
|
| 37 |
+
Returns:
|
| 38 |
+
dict: Contains audio data and metadata, or None if failed
|
| 39 |
+
"""
|
| 40 |
+
try:
|
| 41 |
+
if not text or not text.strip():
|
| 42 |
+
logger.warning("Empty text provided for TTS conversion")
|
| 43 |
+
return None
|
| 44 |
+
|
| 45 |
+
# Clean and prepare text
|
| 46 |
+
cleaned_text = text.strip()
|
| 47 |
+
if len(cleaned_text) > 2000: # Limit text length for TTS
|
| 48 |
+
cleaned_text = cleaned_text[:2000] + "..."
|
| 49 |
+
logger.warning(f"Text truncated to 2000 characters for TTS")
|
| 50 |
+
|
| 51 |
+
# Prepare request
|
| 52 |
+
url = self.base_url
|
| 53 |
+
querystring = {"model": model or self.default_model}
|
| 54 |
+
payload = {"text": cleaned_text}
|
| 55 |
+
headers = {
|
| 56 |
+
"Authorization": f"Token {self.api_key}",
|
| 57 |
+
"Content-Type": "application/json"
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
logger.info(f"Converting text to speech: {cleaned_text[:100]}...")
|
| 61 |
+
|
| 62 |
+
# Make request to Deepgram API
|
| 63 |
+
response = requests.post(
|
| 64 |
+
url,
|
| 65 |
+
json=payload,
|
| 66 |
+
headers=headers,
|
| 67 |
+
params=querystring,
|
| 68 |
+
timeout=30
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
if response.status_code == 200:
|
| 72 |
+
# Encode audio data as base64
|
| 73 |
+
audio_data = response.content
|
| 74 |
+
audio_base64 = base64.b64encode(audio_data).decode('utf-8')
|
| 75 |
+
|
| 76 |
+
# Determine MIME type based on format
|
| 77 |
+
mime_type = f"audio/{format}"
|
| 78 |
+
if format == "mp3":
|
| 79 |
+
mime_type = "audio/mpeg"
|
| 80 |
+
elif format == "wav":
|
| 81 |
+
mime_type = "audio/wav"
|
| 82 |
+
|
| 83 |
+
result = {
|
| 84 |
+
"audio_data": audio_base64,
|
| 85 |
+
"mime_type": mime_type,
|
| 86 |
+
"format": format,
|
| 87 |
+
"text": cleaned_text,
|
| 88 |
+
"model": model or self.default_model,
|
| 89 |
+
"size_bytes": len(audio_data)
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
logger.info(f"TTS conversion successful: {len(audio_data)} bytes")
|
| 93 |
+
return result
|
| 94 |
+
|
| 95 |
+
else:
|
| 96 |
+
logger.error(f"Deepgram TTS API error: {response.status_code} - {response.text}")
|
| 97 |
+
return None
|
| 98 |
+
|
| 99 |
+
except requests.exceptions.Timeout:
|
| 100 |
+
logger.error("TTS request timed out")
|
| 101 |
+
return None
|
| 102 |
+
except requests.exceptions.RequestException as e:
|
| 103 |
+
logger.error(f"TTS request failed: {str(e)}")
|
| 104 |
+
return None
|
| 105 |
+
except Exception as e:
|
| 106 |
+
logger.error(f"Unexpected error in TTS conversion: {str(e)}")
|
| 107 |
+
return None
|
| 108 |
+
|
| 109 |
+
def is_available(self) -> bool:
|
| 110 |
+
"""Check if TTS service is available"""
|
| 111 |
+
return bool(self.api_key)
|
| 112 |
+
|
| 113 |
+
# Global TTS service instance
|
| 114 |
+
tts_service = TTSService()
|