Spaces:
Sleeping
Sleeping
feat: implement Wav2Vec2 character-level ASR with ONNX and Transformers support, add phoneme comparison and feedback generation
Browse files- src/apis/controllers/speaking_controller.py +139 -43
- src/utils/speaking_utils.py +556 -0
src/apis/controllers/speaking_controller.py
CHANGED
|
@@ -121,58 +121,91 @@ class WhisperASR:
|
|
| 121 |
}
|
| 122 |
|
| 123 |
|
| 124 |
-
class
|
| 125 |
-
"""Wav2Vec2 character-level ASR with
|
| 126 |
|
| 127 |
def __init__(
|
| 128 |
self,
|
|
|
|
|
|
|
| 129 |
onnx_model_path: str = "./wav2vec2_asr.onnx",
|
| 130 |
-
processor_name: str = "facebook/wav2vec2-base-960h",
|
| 131 |
):
|
| 132 |
"""
|
| 133 |
-
Initialize Wav2Vec2
|
| 134 |
-
Automatically creates ONNX model if it doesn't exist
|
| 135 |
|
| 136 |
Args:
|
| 137 |
-
|
| 138 |
-
|
|
|
|
| 139 |
"""
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
|
|
|
|
|
|
| 143 |
# Check if ONNX model exists, if not create it
|
| 144 |
-
if not os.path.exists(onnx_model_path):
|
| 145 |
-
print(f"ONNX model not found at {onnx_model_path}. Creating it...")
|
| 146 |
-
self._create_onnx_model(
|
| 147 |
|
| 148 |
try:
|
| 149 |
# Load ONNX model
|
| 150 |
-
self.session = onnxruntime.InferenceSession(onnx_model_path)
|
| 151 |
self.input_name = self.session.get_inputs()[0].name
|
| 152 |
self.output_name = self.session.get_outputs()[0].name
|
| 153 |
|
| 154 |
# Load processor
|
| 155 |
-
self.processor = Wav2Vec2Processor.from_pretrained(
|
| 156 |
|
| 157 |
print("ONNX Wav2Vec2 character model loaded successfully")
|
| 158 |
-
self.model_name = processor_name
|
| 159 |
-
self.onnx_path = onnx_model_path
|
| 160 |
-
self.sample_rate = 16000
|
| 161 |
|
| 162 |
except Exception as e:
|
| 163 |
print(f"Error loading ONNX model: {e}")
|
| 164 |
raise
|
| 165 |
|
| 166 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
"""Create ONNX model if it doesn't exist"""
|
| 168 |
try:
|
| 169 |
# Import the converter from model_convert
|
| 170 |
from src.model_convert.wav2vec2onnx import Wav2Vec2ONNXConverter
|
| 171 |
|
| 172 |
print("Creating new ONNX model...")
|
| 173 |
-
converter = Wav2Vec2ONNXConverter(
|
| 174 |
created_path = converter.convert_to_onnx(
|
| 175 |
-
onnx_path=onnx_model_path,
|
| 176 |
input_length=160000, # 10 seconds
|
| 177 |
opset_version=14,
|
| 178 |
)
|
|
@@ -184,9 +217,16 @@ class Wav2Vec2CharacterASRONNX:
|
|
| 184 |
|
| 185 |
def transcribe_to_characters(self, audio_path: str) -> Dict:
|
| 186 |
"""
|
| 187 |
-
Transcribe audio directly to characters
|
| 188 |
Returns raw character sequence as produced by the model
|
| 189 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
try:
|
| 191 |
# Load audio
|
| 192 |
start_time = time.time()
|
|
@@ -233,14 +273,56 @@ class Wav2Vec2CharacterASRONNX:
|
|
| 233 |
}
|
| 234 |
|
| 235 |
except Exception as e:
|
| 236 |
-
print(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
return {
|
| 238 |
-
"character_transcript":
|
| 239 |
-
"phoneme_representation":
|
| 240 |
-
"raw_predicted_ids": [],
|
| 241 |
-
"confidence_scores":
|
|
|
|
|
|
|
| 242 |
}
|
| 243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
def _calculate_confidence_scores(self, logits: np.ndarray) -> List[float]:
|
| 245 |
"""Calculate confidence scores from logits using numpy"""
|
| 246 |
# Apply softmax
|
|
@@ -257,27 +339,23 @@ class Wav2Vec2CharacterASRONNX:
|
|
| 257 |
logger.info(f"Raw transcript before cleaning: {transcript}")
|
| 258 |
cleaned = re.sub(r"\s+", " ", transcript)
|
| 259 |
cleaned = cleaned.strip().lower()
|
| 260 |
-
|
| 261 |
return cleaned
|
| 262 |
|
| 263 |
def _characters_to_phoneme_representation(self, text: str) -> str:
|
| 264 |
"""Convert character-based transcript to phoneme-like representation for comparison"""
|
| 265 |
-
# This is a simple character-to-phoneme mapping for pronunciation comparison
|
| 266 |
-
# The idea is to convert the raw character output to something comparable with reference phonemes
|
| 267 |
-
|
| 268 |
if not text:
|
| 269 |
return ""
|
| 270 |
|
| 271 |
words = text.split()
|
| 272 |
phoneme_words = []
|
| 273 |
-
|
| 274 |
-
# Use our G2P to convert transcript words to phonemes
|
| 275 |
g2p = SimpleG2P()
|
| 276 |
-
|
| 277 |
for word in words:
|
| 278 |
try:
|
| 279 |
-
|
| 280 |
-
|
|
|
|
|
|
|
|
|
|
| 281 |
except:
|
| 282 |
# Fallback: simple letter-to-sound mapping
|
| 283 |
phoneme_words.extend(self._simple_letter_to_phoneme(word))
|
|
@@ -322,17 +400,35 @@ class Wav2Vec2CharacterASRONNX:
|
|
| 322 |
|
| 323 |
return phonemes
|
| 324 |
|
| 325 |
-
def
|
| 326 |
-
"""
|
| 327 |
return {
|
| 328 |
-
"
|
| 329 |
-
"
|
| 330 |
-
"
|
| 331 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
"sample_rate": self.sample_rate,
|
| 333 |
-
"
|
| 334 |
}
|
| 335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
|
| 337 |
class SimpleG2P:
|
| 338 |
"""Simple Grapheme-to-Phoneme converter for reference text"""
|
|
@@ -866,7 +962,7 @@ class SimplePronunciationAssessor:
|
|
| 866 |
|
| 867 |
def __init__(self):
|
| 868 |
print("Initializing Simple Pronunciation Assessor...")
|
| 869 |
-
self.wav2vec2_asr =
|
| 870 |
self.whisper_asr = WhisperASR() # Normal mode
|
| 871 |
self.word_analyzer = WordAnalyzer()
|
| 872 |
self.feedback_generator = SimpleFeedbackGenerator()
|
|
|
|
| 121 |
}
|
| 122 |
|
| 123 |
|
| 124 |
+
class Wav2Vec2CharacterASR:
|
| 125 |
+
"""Wav2Vec2 character-level ASR with support for both ONNX and Transformers inference"""
|
| 126 |
|
| 127 |
def __init__(
|
| 128 |
self,
|
| 129 |
+
model_name: str = "facebook/wav2vec2-large-960h-lv60-self",
|
| 130 |
+
onnx: bool = False,
|
| 131 |
onnx_model_path: str = "./wav2vec2_asr.onnx",
|
|
|
|
| 132 |
):
|
| 133 |
"""
|
| 134 |
+
Initialize Wav2Vec2 character-level model
|
|
|
|
| 135 |
|
| 136 |
Args:
|
| 137 |
+
model_name: HuggingFace model name
|
| 138 |
+
onnx: If True, use ONNX runtime for inference. If False, use Transformers
|
| 139 |
+
onnx_model_path: Path to the ONNX model file (only used if onnx=True)
|
| 140 |
"""
|
| 141 |
+
self.model_name = model_name
|
| 142 |
+
self.use_onnx = onnx
|
| 143 |
+
self.onnx_model_path = onnx_model_path
|
| 144 |
+
self.sample_rate = 16000
|
| 145 |
+
|
| 146 |
+
print(f"Loading Wav2Vec2 character model: {model_name}")
|
| 147 |
+
print(f"Using {'ONNX' if onnx else 'Transformers'} for inference")
|
| 148 |
+
|
| 149 |
+
if self.use_onnx:
|
| 150 |
+
self._init_onnx_model()
|
| 151 |
+
else:
|
| 152 |
+
self._init_transformers_model()
|
| 153 |
|
| 154 |
+
def _init_onnx_model(self):
|
| 155 |
+
"""Initialize ONNX model and processor"""
|
| 156 |
# Check if ONNX model exists, if not create it
|
| 157 |
+
if not os.path.exists(self.onnx_model_path):
|
| 158 |
+
print(f"ONNX model not found at {self.onnx_model_path}. Creating it...")
|
| 159 |
+
self._create_onnx_model()
|
| 160 |
|
| 161 |
try:
|
| 162 |
# Load ONNX model
|
| 163 |
+
self.session = onnxruntime.InferenceSession(self.onnx_model_path)
|
| 164 |
self.input_name = self.session.get_inputs()[0].name
|
| 165 |
self.output_name = self.session.get_outputs()[0].name
|
| 166 |
|
| 167 |
# Load processor
|
| 168 |
+
self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)
|
| 169 |
|
| 170 |
print("ONNX Wav2Vec2 character model loaded successfully")
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
except Exception as e:
|
| 173 |
print(f"Error loading ONNX model: {e}")
|
| 174 |
raise
|
| 175 |
|
| 176 |
+
def _init_transformers_model(self):
|
| 177 |
+
"""Initialize Transformers model and processor"""
|
| 178 |
+
try:
|
| 179 |
+
self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)
|
| 180 |
+
self.model = Wav2Vec2ForCTC.from_pretrained(self.model_name)
|
| 181 |
+
self.model.eval()
|
| 182 |
+
print("Wav2Vec2 character model loaded successfully")
|
| 183 |
+
except Exception as e:
|
| 184 |
+
print(f"Error loading model {self.model_name}: {e}")
|
| 185 |
+
# Fallback to base model
|
| 186 |
+
fallback_model = "facebook/wav2vec2-base-960h"
|
| 187 |
+
print(f"Trying fallback model: {fallback_model}")
|
| 188 |
+
try:
|
| 189 |
+
self.processor = Wav2Vec2Processor.from_pretrained(fallback_model)
|
| 190 |
+
self.model = Wav2Vec2ForCTC.from_pretrained(fallback_model)
|
| 191 |
+
self.model.eval()
|
| 192 |
+
self.model_name = fallback_model
|
| 193 |
+
print("Fallback model loaded successfully")
|
| 194 |
+
except Exception as e2:
|
| 195 |
+
raise Exception(
|
| 196 |
+
f"Failed to load both models. Original error: {e}, Fallback error: {e2}"
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
def _create_onnx_model(self):
|
| 200 |
"""Create ONNX model if it doesn't exist"""
|
| 201 |
try:
|
| 202 |
# Import the converter from model_convert
|
| 203 |
from src.model_convert.wav2vec2onnx import Wav2Vec2ONNXConverter
|
| 204 |
|
| 205 |
print("Creating new ONNX model...")
|
| 206 |
+
converter = Wav2Vec2ONNXConverter(self.model_name)
|
| 207 |
created_path = converter.convert_to_onnx(
|
| 208 |
+
onnx_path=self.onnx_model_path,
|
| 209 |
input_length=160000, # 10 seconds
|
| 210 |
opset_version=14,
|
| 211 |
)
|
|
|
|
| 217 |
|
| 218 |
def transcribe_to_characters(self, audio_path: str) -> Dict:
|
| 219 |
"""
|
| 220 |
+
Transcribe audio directly to characters (no language model correction)
|
| 221 |
Returns raw character sequence as produced by the model
|
| 222 |
"""
|
| 223 |
+
if self.use_onnx:
|
| 224 |
+
return self._transcribe_onnx(audio_path)
|
| 225 |
+
else:
|
| 226 |
+
return self._transcribe_transformers(audio_path)
|
| 227 |
+
|
| 228 |
+
def _transcribe_onnx(self, audio_path: str) -> Dict:
|
| 229 |
+
"""Transcribe using ONNX runtime"""
|
| 230 |
try:
|
| 231 |
# Load audio
|
| 232 |
start_time = time.time()
|
|
|
|
| 273 |
}
|
| 274 |
|
| 275 |
except Exception as e:
|
| 276 |
+
print(f"ONNX transcription error: {e}")
|
| 277 |
+
return self._empty_result()
|
| 278 |
+
|
| 279 |
+
def _transcribe_transformers(self, audio_path: str) -> Dict:
|
| 280 |
+
"""Transcribe using Transformers"""
|
| 281 |
+
try:
|
| 282 |
+
# Load audio
|
| 283 |
+
start_time = time.time()
|
| 284 |
+
speech, sr = librosa.load(audio_path, sr=self.sample_rate)
|
| 285 |
+
|
| 286 |
+
# Prepare input
|
| 287 |
+
input_values = self.processor(
|
| 288 |
+
speech, sampling_rate=self.sample_rate, return_tensors="pt"
|
| 289 |
+
).input_values
|
| 290 |
+
|
| 291 |
+
# Get model predictions (no language model involved)
|
| 292 |
+
with torch.no_grad():
|
| 293 |
+
logits = self.model(input_values).logits
|
| 294 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 295 |
+
|
| 296 |
+
# Decode to characters directly
|
| 297 |
+
character_transcript = self.processor.batch_decode(predicted_ids)[0]
|
| 298 |
+
|
| 299 |
+
# Clean up character transcript
|
| 300 |
+
character_transcript = self._clean_character_transcript(
|
| 301 |
+
character_transcript
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
# Convert characters to phoneme-like representation
|
| 305 |
+
phoneme_like_transcript = self._characters_to_phoneme_representation(
|
| 306 |
+
character_transcript
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
logger.info(
|
| 310 |
+
f"Transformers transcription time: {time.time() - start_time:.2f}s"
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
return {
|
| 314 |
+
"character_transcript": character_transcript,
|
| 315 |
+
"phoneme_representation": phoneme_like_transcript,
|
| 316 |
+
"raw_predicted_ids": predicted_ids[0].tolist(),
|
| 317 |
+
"confidence_scores": torch.softmax(logits, dim=-1)
|
| 318 |
+
.max(dim=-1)[0][0]
|
| 319 |
+
.tolist()[:100], # Limit for JSON
|
| 320 |
}
|
| 321 |
|
| 322 |
+
except Exception as e:
|
| 323 |
+
print(f"Transformers transcription error: {e}")
|
| 324 |
+
return self._empty_result()
|
| 325 |
+
|
| 326 |
def _calculate_confidence_scores(self, logits: np.ndarray) -> List[float]:
|
| 327 |
"""Calculate confidence scores from logits using numpy"""
|
| 328 |
# Apply softmax
|
|
|
|
| 339 |
logger.info(f"Raw transcript before cleaning: {transcript}")
|
| 340 |
cleaned = re.sub(r"\s+", " ", transcript)
|
| 341 |
cleaned = cleaned.strip().lower()
|
|
|
|
| 342 |
return cleaned
|
| 343 |
|
| 344 |
def _characters_to_phoneme_representation(self, text: str) -> str:
|
| 345 |
"""Convert character-based transcript to phoneme-like representation for comparison"""
|
|
|
|
|
|
|
|
|
|
| 346 |
if not text:
|
| 347 |
return ""
|
| 348 |
|
| 349 |
words = text.split()
|
| 350 |
phoneme_words = []
|
|
|
|
|
|
|
| 351 |
g2p = SimpleG2P()
|
|
|
|
| 352 |
for word in words:
|
| 353 |
try:
|
| 354 |
+
if g2p:
|
| 355 |
+
word_data = g2p.text_to_phonemes(word)[0]
|
| 356 |
+
phoneme_words.extend(word_data["phonemes"])
|
| 357 |
+
else:
|
| 358 |
+
phoneme_words.extend(self._simple_letter_to_phoneme(word))
|
| 359 |
except:
|
| 360 |
# Fallback: simple letter-to-sound mapping
|
| 361 |
phoneme_words.extend(self._simple_letter_to_phoneme(word))
|
|
|
|
| 400 |
|
| 401 |
return phonemes
|
| 402 |
|
| 403 |
+
def _empty_result(self) -> Dict:
|
| 404 |
+
"""Return empty result structure"""
|
| 405 |
return {
|
| 406 |
+
"character_transcript": "",
|
| 407 |
+
"phoneme_representation": "",
|
| 408 |
+
"raw_predicted_ids": [],
|
| 409 |
+
"confidence_scores": [],
|
| 410 |
+
}
|
| 411 |
+
|
| 412 |
+
def get_model_info(self) -> Dict:
|
| 413 |
+
"""Get information about the loaded model"""
|
| 414 |
+
info = {
|
| 415 |
+
"model_name": self.model_name,
|
| 416 |
"sample_rate": self.sample_rate,
|
| 417 |
+
"inference_method": "ONNX" if self.use_onnx else "Transformers",
|
| 418 |
}
|
| 419 |
|
| 420 |
+
if self.use_onnx:
|
| 421 |
+
info.update(
|
| 422 |
+
{
|
| 423 |
+
"onnx_model_path": self.onnx_model_path,
|
| 424 |
+
"input_name": self.input_name,
|
| 425 |
+
"output_name": self.output_name,
|
| 426 |
+
"session_providers": self.session.get_providers(),
|
| 427 |
+
}
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
return info
|
| 431 |
+
|
| 432 |
|
| 433 |
class SimpleG2P:
|
| 434 |
"""Simple Grapheme-to-Phoneme converter for reference text"""
|
|
|
|
| 962 |
|
| 963 |
def __init__(self):
|
| 964 |
print("Initializing Simple Pronunciation Assessor...")
|
| 965 |
+
self.wav2vec2_asr = Wav2Vec2CharacterASR() # Advanced mode
|
| 966 |
self.whisper_asr = WhisperASR() # Normal mode
|
| 967 |
self.word_analyzer = WordAnalyzer()
|
| 968 |
self.feedback_generator = SimpleFeedbackGenerator()
|
src/utils/speaking_utils.py
ADDED
|
@@ -0,0 +1,556 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Dict
|
| 2 |
+
import numpy as np
|
| 3 |
+
import nltk
|
| 4 |
+
import eng_to_ipa as ipa
|
| 5 |
+
import re
|
| 6 |
+
from collections import defaultdict
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
try:
|
| 10 |
+
nltk.download("cmudict", quiet=True)
|
| 11 |
+
from nltk.corpus import cmudict
|
| 12 |
+
except:
|
| 13 |
+
print("Warning: NLTK data not available")
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class SimpleG2P:
|
| 17 |
+
"""Simple Grapheme-to-Phoneme converter for reference text"""
|
| 18 |
+
|
| 19 |
+
def __init__(self):
|
| 20 |
+
try:
|
| 21 |
+
self.cmu_dict = cmudict.dict()
|
| 22 |
+
except:
|
| 23 |
+
self.cmu_dict = {}
|
| 24 |
+
print("Warning: CMU dictionary not available")
|
| 25 |
+
|
| 26 |
+
def text_to_phonemes(self, text: str) -> List[Dict]:
|
| 27 |
+
"""Convert text to phoneme sequence"""
|
| 28 |
+
words = self._clean_text(text).split()
|
| 29 |
+
phoneme_sequence = []
|
| 30 |
+
|
| 31 |
+
for word in words:
|
| 32 |
+
word_phonemes = self._get_word_phonemes(word)
|
| 33 |
+
phoneme_sequence.append(
|
| 34 |
+
{
|
| 35 |
+
"word": word,
|
| 36 |
+
"phonemes": word_phonemes,
|
| 37 |
+
"ipa": self._get_ipa(word),
|
| 38 |
+
"phoneme_string": " ".join(word_phonemes),
|
| 39 |
+
}
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
return phoneme_sequence
|
| 43 |
+
|
| 44 |
+
def get_reference_phoneme_string(self, text: str) -> str:
|
| 45 |
+
"""Get reference phoneme string for comparison"""
|
| 46 |
+
phoneme_sequence = self.text_to_phonemes(text)
|
| 47 |
+
all_phonemes = []
|
| 48 |
+
|
| 49 |
+
for word_data in phoneme_sequence:
|
| 50 |
+
all_phonemes.extend(word_data["phonemes"])
|
| 51 |
+
|
| 52 |
+
return " ".join(all_phonemes)
|
| 53 |
+
|
| 54 |
+
def _clean_text(self, text: str) -> str:
|
| 55 |
+
"""Clean text for processing"""
|
| 56 |
+
text = re.sub(r"[^\w\s\']", " ", text)
|
| 57 |
+
text = re.sub(r"\s+", " ", text)
|
| 58 |
+
return text.lower().strip()
|
| 59 |
+
|
| 60 |
+
def _get_word_phonemes(self, word: str) -> List[str]:
|
| 61 |
+
"""Get phonemes for a word"""
|
| 62 |
+
word_lower = word.lower()
|
| 63 |
+
|
| 64 |
+
if word_lower in self.cmu_dict:
|
| 65 |
+
# Remove stress markers and convert to Wav2Vec2 phoneme format
|
| 66 |
+
phonemes = self.cmu_dict[word_lower][0]
|
| 67 |
+
clean_phonemes = [re.sub(r"[0-9]", "", p) for p in phonemes]
|
| 68 |
+
return self._convert_to_wav2vec_format(clean_phonemes)
|
| 69 |
+
else:
|
| 70 |
+
return self._estimate_phonemes(word)
|
| 71 |
+
|
| 72 |
+
def _convert_to_wav2vec_format(self, cmu_phonemes: List[str]) -> List[str]:
|
| 73 |
+
"""Convert CMU phonemes to Wav2Vec2 format"""
|
| 74 |
+
# Mapping from CMU to Wav2Vec2/eSpeak phonemes
|
| 75 |
+
cmu_to_espeak = {
|
| 76 |
+
"AA": "ɑ",
|
| 77 |
+
"AE": "æ",
|
| 78 |
+
"AH": "ʌ",
|
| 79 |
+
"AO": "ɔ",
|
| 80 |
+
"AW": "aʊ",
|
| 81 |
+
"AY": "aɪ",
|
| 82 |
+
"EH": "ɛ",
|
| 83 |
+
"ER": "ɝ",
|
| 84 |
+
"EY": "eɪ",
|
| 85 |
+
"IH": "ɪ",
|
| 86 |
+
"IY": "i",
|
| 87 |
+
"OW": "oʊ",
|
| 88 |
+
"OY": "ɔɪ",
|
| 89 |
+
"UH": "ʊ",
|
| 90 |
+
"UW": "u",
|
| 91 |
+
"B": "b",
|
| 92 |
+
"CH": "tʃ",
|
| 93 |
+
"D": "d",
|
| 94 |
+
"DH": "ð",
|
| 95 |
+
"F": "f",
|
| 96 |
+
"G": "ɡ",
|
| 97 |
+
"HH": "h",
|
| 98 |
+
"JH": "dʒ",
|
| 99 |
+
"K": "k",
|
| 100 |
+
"L": "l",
|
| 101 |
+
"M": "m",
|
| 102 |
+
"N": "n",
|
| 103 |
+
"NG": "ŋ",
|
| 104 |
+
"P": "p",
|
| 105 |
+
"R": "r",
|
| 106 |
+
"S": "s",
|
| 107 |
+
"SH": "ʃ",
|
| 108 |
+
"T": "t",
|
| 109 |
+
"TH": "θ",
|
| 110 |
+
"V": "v",
|
| 111 |
+
"W": "w",
|
| 112 |
+
"Y": "j",
|
| 113 |
+
"Z": "z",
|
| 114 |
+
"ZH": "ʒ",
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
converted = []
|
| 118 |
+
for phoneme in cmu_phonemes:
|
| 119 |
+
converted_phoneme = cmu_to_espeak.get(phoneme, phoneme.lower())
|
| 120 |
+
converted.append(converted_phoneme)
|
| 121 |
+
|
| 122 |
+
return converted
|
| 123 |
+
|
| 124 |
+
def _get_ipa(self, word: str) -> str:
|
| 125 |
+
"""Get IPA transcription"""
|
| 126 |
+
try:
|
| 127 |
+
return ipa.convert(word)
|
| 128 |
+
except:
|
| 129 |
+
return f"/{word}/"
|
| 130 |
+
|
| 131 |
+
def _estimate_phonemes(self, word: str) -> List[str]:
|
| 132 |
+
"""Estimate phonemes for unknown words"""
|
| 133 |
+
# Basic phoneme estimation with eSpeak-style output
|
| 134 |
+
phoneme_map = {
|
| 135 |
+
"ch": ["tʃ"],
|
| 136 |
+
"sh": ["ʃ"],
|
| 137 |
+
"th": ["θ"],
|
| 138 |
+
"ph": ["f"],
|
| 139 |
+
"ck": ["k"],
|
| 140 |
+
"ng": ["ŋ"],
|
| 141 |
+
"qu": ["k", "w"],
|
| 142 |
+
"a": ["æ"],
|
| 143 |
+
"e": ["ɛ"],
|
| 144 |
+
"i": ["ɪ"],
|
| 145 |
+
"o": ["ʌ"],
|
| 146 |
+
"u": ["ʌ"],
|
| 147 |
+
"b": ["b"],
|
| 148 |
+
"c": ["k"],
|
| 149 |
+
"d": ["d"],
|
| 150 |
+
"f": ["f"],
|
| 151 |
+
"g": ["ɡ"],
|
| 152 |
+
"h": ["h"],
|
| 153 |
+
"j": ["dʒ"],
|
| 154 |
+
"k": ["k"],
|
| 155 |
+
"l": ["l"],
|
| 156 |
+
"m": ["m"],
|
| 157 |
+
"n": ["n"],
|
| 158 |
+
"p": ["p"],
|
| 159 |
+
"r": ["r"],
|
| 160 |
+
"s": ["s"],
|
| 161 |
+
"t": ["t"],
|
| 162 |
+
"v": ["v"],
|
| 163 |
+
"w": ["w"],
|
| 164 |
+
"x": ["k", "s"],
|
| 165 |
+
"y": ["j"],
|
| 166 |
+
"z": ["z"],
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
word = word.lower()
|
| 170 |
+
phonemes = []
|
| 171 |
+
i = 0
|
| 172 |
+
|
| 173 |
+
while i < len(word):
|
| 174 |
+
# Check 2-letter combinations first
|
| 175 |
+
if i <= len(word) - 2:
|
| 176 |
+
two_char = word[i : i + 2]
|
| 177 |
+
if two_char in phoneme_map:
|
| 178 |
+
phonemes.extend(phoneme_map[two_char])
|
| 179 |
+
i += 2
|
| 180 |
+
continue
|
| 181 |
+
|
| 182 |
+
# Single character
|
| 183 |
+
char = word[i]
|
| 184 |
+
if char in phoneme_map:
|
| 185 |
+
phonemes.extend(phoneme_map[char])
|
| 186 |
+
|
| 187 |
+
i += 1
|
| 188 |
+
|
| 189 |
+
return phonemes
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
class PhonemeComparator:
|
| 193 |
+
"""Compare reference and learner phoneme sequences"""
|
| 194 |
+
|
| 195 |
+
def __init__(self):
|
| 196 |
+
# Vietnamese speakers' common phoneme substitutions
|
| 197 |
+
self.substitution_patterns = {
|
| 198 |
+
"θ": ["f", "s", "t"], # TH → F, S, T
|
| 199 |
+
"ð": ["d", "z", "v"], # DH → D, Z, V
|
| 200 |
+
"v": ["w", "f"], # V → W, F
|
| 201 |
+
"r": ["l"], # R → L
|
| 202 |
+
"l": ["r"], # L → R
|
| 203 |
+
"z": ["s"], # Z → S
|
| 204 |
+
"ʒ": ["ʃ", "z"], # ZH → SH, Z
|
| 205 |
+
"ŋ": ["n"], # NG → N
|
| 206 |
+
}
|
| 207 |
+
|
| 208 |
+
# Difficulty levels for Vietnamese speakers
|
| 209 |
+
self.difficulty_map = {
|
| 210 |
+
"θ": 0.9, # th (think)
|
| 211 |
+
"ð": 0.9, # th (this)
|
| 212 |
+
"v": 0.8, # v
|
| 213 |
+
"z": 0.8, # z
|
| 214 |
+
"ʒ": 0.9, # zh (measure)
|
| 215 |
+
"r": 0.7, # r
|
| 216 |
+
"l": 0.6, # l
|
| 217 |
+
"w": 0.5, # w
|
| 218 |
+
"f": 0.4, # f
|
| 219 |
+
"s": 0.3, # s
|
| 220 |
+
"ʃ": 0.5, # sh
|
| 221 |
+
"tʃ": 0.4, # ch
|
| 222 |
+
"dʒ": 0.5, # j
|
| 223 |
+
"ŋ": 0.3, # ng
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
def compare_phoneme_sequences(
|
| 227 |
+
self, reference_phonemes: str, learner_phonemes: str
|
| 228 |
+
) -> List[Dict]:
|
| 229 |
+
"""Compare reference and learner phoneme sequences"""
|
| 230 |
+
|
| 231 |
+
# Split phoneme strings
|
| 232 |
+
ref_phones = reference_phonemes.split()
|
| 233 |
+
learner_phones = learner_phonemes.split()
|
| 234 |
+
|
| 235 |
+
print(f"Reference phonemes: {ref_phones}")
|
| 236 |
+
print(f"Learner phonemes: {learner_phones}")
|
| 237 |
+
|
| 238 |
+
# Simple alignment comparison
|
| 239 |
+
comparisons = []
|
| 240 |
+
max_len = max(len(ref_phones), len(learner_phones))
|
| 241 |
+
|
| 242 |
+
for i in range(max_len):
|
| 243 |
+
ref_phoneme = ref_phones[i] if i < len(ref_phones) else ""
|
| 244 |
+
learner_phoneme = learner_phones[i] if i < len(learner_phones) else ""
|
| 245 |
+
|
| 246 |
+
if ref_phoneme and learner_phoneme:
|
| 247 |
+
# Both present - check accuracy
|
| 248 |
+
if ref_phoneme == learner_phoneme:
|
| 249 |
+
status = "correct"
|
| 250 |
+
score = 1.0
|
| 251 |
+
elif self._is_acceptable_substitution(ref_phoneme, learner_phoneme):
|
| 252 |
+
status = "acceptable"
|
| 253 |
+
score = 0.7
|
| 254 |
+
else:
|
| 255 |
+
status = "wrong"
|
| 256 |
+
score = 0.2
|
| 257 |
+
|
| 258 |
+
elif ref_phoneme and not learner_phoneme:
|
| 259 |
+
# Missing phoneme
|
| 260 |
+
status = "missing"
|
| 261 |
+
score = 0.0
|
| 262 |
+
|
| 263 |
+
elif learner_phoneme and not ref_phoneme:
|
| 264 |
+
# Extra phoneme
|
| 265 |
+
status = "extra"
|
| 266 |
+
score = 0.0
|
| 267 |
+
else:
|
| 268 |
+
continue
|
| 269 |
+
|
| 270 |
+
comparison = {
|
| 271 |
+
"position": i,
|
| 272 |
+
"reference_phoneme": ref_phoneme,
|
| 273 |
+
"learner_phoneme": learner_phoneme,
|
| 274 |
+
"status": status,
|
| 275 |
+
"score": score,
|
| 276 |
+
"difficulty": self.difficulty_map.get(ref_phoneme, 0.3),
|
| 277 |
+
}
|
| 278 |
+
|
| 279 |
+
comparisons.append(comparison)
|
| 280 |
+
|
| 281 |
+
return comparisons
|
| 282 |
+
|
| 283 |
+
def _is_acceptable_substitution(self, reference: str, learner: str) -> bool:
|
| 284 |
+
"""Check if learner phoneme is acceptable substitution for Vietnamese speakers"""
|
| 285 |
+
acceptable = self.substitution_patterns.get(reference, [])
|
| 286 |
+
return learner in acceptable
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
# =============================================================================
|
| 290 |
+
# WORD ANALYZER
|
| 291 |
+
# =============================================================================
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
class WordAnalyzer:
|
| 295 |
+
"""Analyze word-level pronunciation accuracy using character-based ASR"""
|
| 296 |
+
|
| 297 |
+
def __init__(self):
|
| 298 |
+
self.g2p = SimpleG2P()
|
| 299 |
+
self.comparator = PhonemeComparator()
|
| 300 |
+
|
| 301 |
+
def analyze_words(self, reference_text: str, learner_phonemes: str) -> Dict:
|
| 302 |
+
"""Analyze word-level pronunciation using phoneme representation from character ASR"""
|
| 303 |
+
|
| 304 |
+
# Get reference phonemes by word
|
| 305 |
+
reference_words = self.g2p.text_to_phonemes(reference_text)
|
| 306 |
+
|
| 307 |
+
# Get overall phoneme comparison
|
| 308 |
+
reference_phoneme_string = self.g2p.get_reference_phoneme_string(reference_text)
|
| 309 |
+
phoneme_comparisons = self.comparator.compare_phoneme_sequences(
|
| 310 |
+
reference_phoneme_string, learner_phonemes
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
# Map phonemes back to words
|
| 314 |
+
word_highlights = self._create_word_highlights(
|
| 315 |
+
reference_words, phoneme_comparisons
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
# Identify wrong words
|
| 319 |
+
wrong_words = self._identify_wrong_words(word_highlights, phoneme_comparisons)
|
| 320 |
+
|
| 321 |
+
return {
|
| 322 |
+
"word_highlights": word_highlights,
|
| 323 |
+
"phoneme_differences": phoneme_comparisons,
|
| 324 |
+
"wrong_words": wrong_words,
|
| 325 |
+
}
|
| 326 |
+
|
| 327 |
+
def _create_word_highlights(
|
| 328 |
+
self, reference_words: List[Dict], phoneme_comparisons: List[Dict]
|
| 329 |
+
) -> List[Dict]:
|
| 330 |
+
"""Create word highlighting data"""
|
| 331 |
+
|
| 332 |
+
word_highlights = []
|
| 333 |
+
phoneme_index = 0
|
| 334 |
+
|
| 335 |
+
for word_data in reference_words:
|
| 336 |
+
word = word_data["word"]
|
| 337 |
+
word_phonemes = word_data["phonemes"]
|
| 338 |
+
num_phonemes = len(word_phonemes)
|
| 339 |
+
|
| 340 |
+
# Get phoneme scores for this word
|
| 341 |
+
word_phoneme_scores = []
|
| 342 |
+
for j in range(num_phonemes):
|
| 343 |
+
if phoneme_index + j < len(phoneme_comparisons):
|
| 344 |
+
comparison = phoneme_comparisons[phoneme_index + j]
|
| 345 |
+
word_phoneme_scores.append(comparison["score"])
|
| 346 |
+
|
| 347 |
+
# Calculate word score
|
| 348 |
+
word_score = np.mean(word_phoneme_scores) if word_phoneme_scores else 0.0
|
| 349 |
+
|
| 350 |
+
# Create word highlight
|
| 351 |
+
highlight = {
|
| 352 |
+
"word": word,
|
| 353 |
+
"score": float(word_score),
|
| 354 |
+
"status": self._get_word_status(word_score),
|
| 355 |
+
"color": self._get_word_color(word_score),
|
| 356 |
+
"phonemes": word_phonemes,
|
| 357 |
+
"ipa": word_data["ipa"],
|
| 358 |
+
"phoneme_scores": word_phoneme_scores,
|
| 359 |
+
"phoneme_start_index": phoneme_index,
|
| 360 |
+
"phoneme_end_index": phoneme_index + num_phonemes - 1,
|
| 361 |
+
}
|
| 362 |
+
|
| 363 |
+
word_highlights.append(highlight)
|
| 364 |
+
phoneme_index += num_phonemes
|
| 365 |
+
|
| 366 |
+
return word_highlights
|
| 367 |
+
|
| 368 |
+
def _identify_wrong_words(
|
| 369 |
+
self, word_highlights: List[Dict], phoneme_comparisons: List[Dict]
|
| 370 |
+
) -> List[Dict]:
|
| 371 |
+
"""Identify words that were pronounced incorrectly"""
|
| 372 |
+
|
| 373 |
+
wrong_words = []
|
| 374 |
+
|
| 375 |
+
for word_highlight in word_highlights:
|
| 376 |
+
if word_highlight["score"] < 0.6: # Threshold for wrong pronunciation
|
| 377 |
+
|
| 378 |
+
# Find specific phoneme errors for this word
|
| 379 |
+
start_idx = word_highlight["phoneme_start_index"]
|
| 380 |
+
end_idx = word_highlight["phoneme_end_index"]
|
| 381 |
+
|
| 382 |
+
wrong_phonemes = []
|
| 383 |
+
missing_phonemes = []
|
| 384 |
+
|
| 385 |
+
for i in range(start_idx, min(end_idx + 1, len(phoneme_comparisons))):
|
| 386 |
+
comparison = phoneme_comparisons[i]
|
| 387 |
+
|
| 388 |
+
if comparison["status"] == "wrong":
|
| 389 |
+
wrong_phonemes.append(
|
| 390 |
+
{
|
| 391 |
+
"expected": comparison["reference_phoneme"],
|
| 392 |
+
"actual": comparison["learner_phoneme"],
|
| 393 |
+
"difficulty": comparison["difficulty"],
|
| 394 |
+
}
|
| 395 |
+
)
|
| 396 |
+
elif comparison["status"] == "missing":
|
| 397 |
+
missing_phonemes.append(
|
| 398 |
+
{
|
| 399 |
+
"phoneme": comparison["reference_phoneme"],
|
| 400 |
+
"difficulty": comparison["difficulty"],
|
| 401 |
+
}
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
wrong_word = {
|
| 405 |
+
"word": word_highlight["word"],
|
| 406 |
+
"score": word_highlight["score"],
|
| 407 |
+
"expected_phonemes": word_highlight["phonemes"],
|
| 408 |
+
"ipa": word_highlight["ipa"],
|
| 409 |
+
"wrong_phonemes": wrong_phonemes,
|
| 410 |
+
"missing_phonemes": missing_phonemes,
|
| 411 |
+
"tips": self._get_vietnamese_tips(wrong_phonemes, missing_phonemes),
|
| 412 |
+
}
|
| 413 |
+
|
| 414 |
+
wrong_words.append(wrong_word)
|
| 415 |
+
|
| 416 |
+
return wrong_words
|
| 417 |
+
|
| 418 |
+
def _get_word_status(self, score: float) -> str:
|
| 419 |
+
"""Get word status from score"""
|
| 420 |
+
if score >= 0.8:
|
| 421 |
+
return "excellent"
|
| 422 |
+
elif score >= 0.6:
|
| 423 |
+
return "good"
|
| 424 |
+
elif score >= 0.4:
|
| 425 |
+
return "needs_practice"
|
| 426 |
+
else:
|
| 427 |
+
return "poor"
|
| 428 |
+
|
| 429 |
+
def _get_word_color(self, score: float) -> str:
|
| 430 |
+
"""Get color for word highlighting"""
|
| 431 |
+
if score >= 0.8:
|
| 432 |
+
return "#22c55e" # Green
|
| 433 |
+
elif score >= 0.6:
|
| 434 |
+
return "#84cc16" # Light green
|
| 435 |
+
elif score >= 0.4:
|
| 436 |
+
return "#eab308" # Yellow
|
| 437 |
+
else:
|
| 438 |
+
return "#ef4444" # Red
|
| 439 |
+
|
| 440 |
+
def _get_vietnamese_tips(
|
| 441 |
+
self, wrong_phonemes: List[Dict], missing_phonemes: List[Dict]
|
| 442 |
+
) -> List[str]:
|
| 443 |
+
"""Get Vietnamese-specific pronunciation tips"""
|
| 444 |
+
|
| 445 |
+
tips = []
|
| 446 |
+
|
| 447 |
+
# Tips for specific Vietnamese pronunciation challenges
|
| 448 |
+
vietnamese_tips = {
|
| 449 |
+
"θ": "Đặt lưỡi giữa răng trên và dưới, thổi nhẹ (think, three)",
|
| 450 |
+
"ð": "Giống θ nhưng rung dây thanh âm (this, that)",
|
| 451 |
+
"v": "Chạm môi dưới vào răng trên, không dùng cả hai môi như tiếng Việt",
|
| 452 |
+
"r": "Cuộn lưỡi nhưng không chạm vào vòm miệng, không lăn lưỡi",
|
| 453 |
+
"l": "Đầu lưỡi chạm vào vòm miệng sau răng",
|
| 454 |
+
"z": "Giống âm 's' nhưng có rung dây thanh âm",
|
| 455 |
+
"ʒ": "Giống âm 'ʃ' (sh) nhưng có rung dây thanh âm",
|
| 456 |
+
"w": "Tròn môi như âm 'u', không dùng răng như âm 'v'",
|
| 457 |
+
}
|
| 458 |
+
|
| 459 |
+
# Add tips for wrong phonemes
|
| 460 |
+
for wrong in wrong_phonemes:
|
| 461 |
+
expected = wrong["expected"]
|
| 462 |
+
actual = wrong["actual"]
|
| 463 |
+
|
| 464 |
+
if expected in vietnamese_tips:
|
| 465 |
+
tips.append(f"Âm '{expected}': {vietnamese_tips[expected]}")
|
| 466 |
+
else:
|
| 467 |
+
tips.append(f"Luyện âm '{expected}' thay vì '{actual}'")
|
| 468 |
+
|
| 469 |
+
# Add tips for missing phonemes
|
| 470 |
+
for missing in missing_phonemes:
|
| 471 |
+
phoneme = missing["phoneme"]
|
| 472 |
+
if phoneme in vietnamese_tips:
|
| 473 |
+
tips.append(f"Thiếu âm '{phoneme}': {vietnamese_tips[phoneme]}")
|
| 474 |
+
|
| 475 |
+
return tips
|
| 476 |
+
|
| 477 |
+
|
| 478 |
+
class SimpleFeedbackGenerator:
|
| 479 |
+
"""Generate simple, actionable feedback in Vietnamese"""
|
| 480 |
+
|
| 481 |
+
def generate_feedback(
|
| 482 |
+
self,
|
| 483 |
+
overall_score: float,
|
| 484 |
+
wrong_words: List[Dict],
|
| 485 |
+
phoneme_comparisons: List[Dict],
|
| 486 |
+
) -> List[str]:
|
| 487 |
+
"""Generate Vietnamese feedback"""
|
| 488 |
+
|
| 489 |
+
feedback = []
|
| 490 |
+
|
| 491 |
+
# Overall feedback in Vietnamese
|
| 492 |
+
if overall_score >= 0.8:
|
| 493 |
+
feedback.append("Phát âm rất tốt! Bạn đã làm xuất sắc.")
|
| 494 |
+
elif overall_score >= 0.6:
|
| 495 |
+
feedback.append("Phát âm khá tốt, còn một vài điểm cần cải thiện.")
|
| 496 |
+
elif overall_score >= 0.4:
|
| 497 |
+
feedback.append(
|
| 498 |
+
"Cần luyện tập thêm. Tập trung vào những từ được đánh dấu đỏ."
|
| 499 |
+
)
|
| 500 |
+
else:
|
| 501 |
+
feedback.append("Hãy luyện tập chậm và rõ ràng hơn.")
|
| 502 |
+
|
| 503 |
+
# Wrong words feedback
|
| 504 |
+
if wrong_words:
|
| 505 |
+
if len(wrong_words) <= 3:
|
| 506 |
+
word_names = [w["word"] for w in wrong_words]
|
| 507 |
+
feedback.append(f"Các từ cần luyện tập: {', '.join(word_names)}")
|
| 508 |
+
else:
|
| 509 |
+
feedback.append(
|
| 510 |
+
f"Có {len(wrong_words)} từ cần luyện tập. Tập trung vào từng từ một."
|
| 511 |
+
)
|
| 512 |
+
|
| 513 |
+
# Most problematic phonemes
|
| 514 |
+
problem_phonemes = defaultdict(int)
|
| 515 |
+
for comparison in phoneme_comparisons:
|
| 516 |
+
if comparison["status"] in ["wrong", "missing"]:
|
| 517 |
+
phoneme = comparison["reference_phoneme"]
|
| 518 |
+
problem_phonemes[phoneme] += 1
|
| 519 |
+
|
| 520 |
+
if problem_phonemes:
|
| 521 |
+
most_difficult = sorted(
|
| 522 |
+
problem_phonemes.items(), key=lambda x: x[1], reverse=True
|
| 523 |
+
)
|
| 524 |
+
top_problem = most_difficult[0][0]
|
| 525 |
+
|
| 526 |
+
phoneme_tips = {
|
| 527 |
+
"θ": "Lưỡi giữa răng, thổi nhẹ",
|
| 528 |
+
"ð": "Lưỡi giữa răng, rung dây thanh",
|
| 529 |
+
"v": "Môi dưới chạm răng trên",
|
| 530 |
+
"r": "Cuộn lưỡi, không chạm vòm miệng",
|
| 531 |
+
"l": "Lưỡi chạm vòm miệng",
|
| 532 |
+
"z": "Như 's' nhưng rung dây thanh",
|
| 533 |
+
}
|
| 534 |
+
|
| 535 |
+
if top_problem in phoneme_tips:
|
| 536 |
+
feedback.append(
|
| 537 |
+
f"Âm khó nhất '{top_problem}': {phoneme_tips[top_problem]}"
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
return feedback
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
def convert_numpy_types(obj):
|
| 544 |
+
"""Convert numpy types to Python native types"""
|
| 545 |
+
if isinstance(obj, np.integer):
|
| 546 |
+
return int(obj)
|
| 547 |
+
elif isinstance(obj, np.floating):
|
| 548 |
+
return float(obj)
|
| 549 |
+
elif isinstance(obj, np.ndarray):
|
| 550 |
+
return obj.tolist()
|
| 551 |
+
elif isinstance(obj, dict):
|
| 552 |
+
return {key: convert_numpy_types(value) for key, value in obj.items()}
|
| 553 |
+
elif isinstance(obj, list):
|
| 554 |
+
return [convert_numpy_types(item) for item in obj]
|
| 555 |
+
else:
|
| 556 |
+
return obj
|