Spaces:
Sleeping
Sleeping
Implement feature X to enhance user experience and fix bug Y in module Z
Browse files- src/apis/routes/speaking_route.py +1381 -467
src/apis/routes/speaking_route.py
CHANGED
|
@@ -1,16 +1,19 @@
|
|
| 1 |
-
#
|
| 2 |
-
#
|
| 3 |
|
| 4 |
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, APIRouter
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
from pydantic import BaseModel
|
| 7 |
-
from typing import List, Dict, Optional
|
| 8 |
import tempfile
|
| 9 |
import os
|
| 10 |
import numpy as np
|
|
|
|
| 11 |
import nltk
|
| 12 |
import eng_to_ipa as ipa
|
| 13 |
-
import
|
|
|
|
|
|
|
| 14 |
import re
|
| 15 |
from collections import defaultdict
|
| 16 |
import warnings
|
|
@@ -20,6 +23,7 @@ warnings.filterwarnings("ignore")
|
|
| 20 |
# Download required NLTK data
|
| 21 |
try:
|
| 22 |
nltk.download("cmudict", quiet=True)
|
|
|
|
| 23 |
from nltk.corpus import cmudict
|
| 24 |
except:
|
| 25 |
print("Warning: NLTK data not available")
|
|
@@ -27,74 +31,147 @@ except:
|
|
| 27 |
# =============================================================================
|
| 28 |
# MODELS
|
| 29 |
# =============================================================================
|
|
|
|
| 30 |
|
| 31 |
-
router = APIRouter(prefix="/pronunciation", tags=["Pronunciation"])
|
| 32 |
|
| 33 |
-
|
| 34 |
-
class PronunciationAssessmentResult(BaseModel):
|
| 35 |
-
transcript: str
|
| 36 |
overall_score: float
|
| 37 |
-
|
| 38 |
-
phoneme_differences: List[Dict]
|
| 39 |
-
wrong_words: List[Dict]
|
| 40 |
feedback: List[str]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
# =============================================================================
|
| 44 |
-
#
|
| 45 |
# =============================================================================
|
| 46 |
|
| 47 |
|
| 48 |
-
class
|
| 49 |
-
"""
|
| 50 |
|
| 51 |
def __init__(self):
|
|
|
|
|
|
|
|
|
|
| 52 |
try:
|
| 53 |
self.cmu_dict = cmudict.dict()
|
| 54 |
except:
|
| 55 |
self.cmu_dict = {}
|
| 56 |
print("Warning: CMU dictionary not available")
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
words = self._clean_text(text).split()
|
| 61 |
-
phoneme_sequence = []
|
| 62 |
-
|
| 63 |
-
for word in words:
|
| 64 |
-
word_phonemes = self._get_word_phonemes(word)
|
| 65 |
-
phoneme_sequence.append(
|
| 66 |
-
{"word": word, "phonemes": word_phonemes, "ipa": self._get_ipa(word)}
|
| 67 |
-
)
|
| 68 |
-
|
| 69 |
-
return phoneme_sequence
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
def
|
| 78 |
-
"""Get
|
| 79 |
-
word_lower = word.lower()
|
| 80 |
|
|
|
|
|
|
|
| 81 |
if word_lower in self.cmu_dict:
|
| 82 |
-
#
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
try:
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
except:
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
def _estimate_phonemes(self, word: str) -> List[str]:
|
| 97 |
"""Estimate phonemes for unknown words"""
|
|
|
|
| 98 |
phoneme_map = {
|
| 99 |
"ch": ["CH"],
|
| 100 |
"sh": ["SH"],
|
|
@@ -136,7 +213,7 @@ class SimpleG2P:
|
|
| 136 |
|
| 137 |
while i < len(word):
|
| 138 |
# Check 2-letter combinations first
|
| 139 |
-
if i
|
| 140 |
two_char = word[i : i + 2]
|
| 141 |
if two_char in phoneme_map:
|
| 142 |
phonemes.extend(phoneme_map[two_char])
|
|
@@ -152,343 +229,921 @@ class SimpleG2P:
|
|
| 152 |
|
| 153 |
return phonemes
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
#
|
| 161 |
-
|
| 162 |
-
"
|
| 163 |
-
"
|
| 164 |
-
"
|
| 165 |
-
"
|
| 166 |
-
"
|
| 167 |
-
"
|
| 168 |
-
"
|
| 169 |
-
"
|
| 170 |
-
"
|
| 171 |
-
"
|
| 172 |
-
"
|
| 173 |
-
"
|
| 174 |
-
"
|
| 175 |
-
"
|
| 176 |
}
|
| 177 |
|
| 178 |
-
#
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
"
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
}
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
"""Compare reference and learner phoneme sequences"""
|
| 192 |
-
|
| 193 |
-
# Flatten phoneme sequences
|
| 194 |
-
ref_sequence = []
|
| 195 |
-
learner_sequence = []
|
| 196 |
-
|
| 197 |
-
for word_data in reference_phonemes:
|
| 198 |
-
for phoneme in word_data["phonemes"]:
|
| 199 |
-
ref_sequence.append({"phoneme": phoneme, "word": word_data["word"]})
|
| 200 |
-
|
| 201 |
-
for word_data in learner_phonemes:
|
| 202 |
-
for phoneme in word_data["phonemes"]:
|
| 203 |
-
learner_sequence.append({"phoneme": phoneme, "word": word_data["word"]})
|
| 204 |
-
|
| 205 |
-
# Simple alignment and comparison
|
| 206 |
-
comparisons = []
|
| 207 |
-
max_len = max(len(ref_sequence), len(learner_sequence))
|
| 208 |
-
|
| 209 |
-
for i in range(max_len):
|
| 210 |
-
ref_item = ref_sequence[i] if i < len(ref_sequence) else None
|
| 211 |
-
learner_item = learner_sequence[i] if i < len(learner_sequence) else None
|
| 212 |
-
|
| 213 |
-
if ref_item and learner_item:
|
| 214 |
-
ref_phoneme = ref_item["phoneme"]
|
| 215 |
-
learner_phoneme = learner_item["phoneme"]
|
| 216 |
-
|
| 217 |
-
if ref_phoneme == learner_phoneme:
|
| 218 |
-
status = "correct"
|
| 219 |
-
score = 1.0
|
| 220 |
-
elif self._is_acceptable_substitution(ref_phoneme, learner_phoneme):
|
| 221 |
-
status = "acceptable"
|
| 222 |
-
score = 0.7
|
| 223 |
-
else:
|
| 224 |
-
status = "wrong"
|
| 225 |
-
score = 0.3
|
| 226 |
|
| 227 |
-
|
| 228 |
-
{
|
| 229 |
-
"position": i,
|
| 230 |
-
"reference_phoneme": ref_phoneme,
|
| 231 |
-
"learner_phoneme": learner_phoneme,
|
| 232 |
-
"status": status,
|
| 233 |
-
"score": score,
|
| 234 |
-
"word": ref_item["word"],
|
| 235 |
-
"difficulty": self.difficulty_map.get(ref_phoneme, 0.3),
|
| 236 |
-
}
|
| 237 |
-
)
|
| 238 |
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
"position": i,
|
| 244 |
-
"reference_phoneme": ref_item["phoneme"],
|
| 245 |
-
"learner_phoneme": "",
|
| 246 |
-
"status": "missing",
|
| 247 |
-
"score": 0.0,
|
| 248 |
-
"word": ref_item["word"],
|
| 249 |
-
"difficulty": self.difficulty_map.get(ref_item["phoneme"], 0.3),
|
| 250 |
-
}
|
| 251 |
-
)
|
| 252 |
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
-
return comparisons
|
| 268 |
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
return learner in acceptable
|
| 273 |
|
| 274 |
|
| 275 |
-
class
|
| 276 |
-
"""
|
| 277 |
|
| 278 |
def __init__(self):
|
| 279 |
-
|
| 280 |
-
self.whisper_model = whisper.load_model("base.en", in_memory=True)
|
| 281 |
-
print("Whisper model loaded successfully")
|
| 282 |
-
|
| 283 |
-
self.g2p = SimpleG2P()
|
| 284 |
-
self.comparator = SimplePhonemeComparator()
|
| 285 |
self.sample_rate = 16000
|
| 286 |
|
| 287 |
-
def
|
| 288 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
-
#
|
| 291 |
-
|
| 292 |
-
asr_result = self.whisper_model.transcribe(audio_path)
|
| 293 |
-
transcript = asr_result["text"].strip()
|
| 294 |
-
print(f"Transcript: '{transcript}'")
|
| 295 |
|
| 296 |
-
#
|
| 297 |
-
|
| 298 |
-
reference_phonemes = self.g2p.text_to_phonemes(reference_text)
|
| 299 |
|
| 300 |
-
#
|
| 301 |
-
|
| 302 |
-
learner_phonemes = self.g2p.text_to_phonemes(transcript)
|
| 303 |
|
| 304 |
-
#
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
reference_phonemes, learner_phonemes
|
| 308 |
)
|
| 309 |
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
|
| 316 |
-
#
|
| 317 |
-
|
| 318 |
-
|
|
|
|
| 319 |
|
| 320 |
-
#
|
| 321 |
-
|
|
|
|
|
|
|
| 322 |
|
| 323 |
-
#
|
| 324 |
-
|
| 325 |
-
|
| 326 |
)
|
| 327 |
|
| 328 |
return {
|
| 329 |
-
"transcript": transcript,
|
| 330 |
"overall_score": overall_score,
|
| 331 |
-
"
|
| 332 |
-
"
|
| 333 |
-
"wrong_words": wrong_words,
|
| 334 |
"feedback": feedback,
|
|
|
|
|
|
|
| 335 |
}
|
| 336 |
|
| 337 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
self,
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
# Create highlights for reference words
|
| 355 |
-
for word_data in reference_phonemes:
|
| 356 |
-
word = word_data["word"]
|
| 357 |
-
scores = word_scores.get(word, [0.0])
|
| 358 |
-
avg_score = float(np.mean(scores))
|
| 359 |
-
|
| 360 |
-
highlight = {
|
| 361 |
-
"word": word,
|
| 362 |
-
"score": avg_score,
|
| 363 |
-
"status": self._get_word_status(avg_score),
|
| 364 |
-
"color": self._get_word_color(avg_score),
|
| 365 |
-
"phonemes": word_data["phonemes"],
|
| 366 |
-
"ipa": word_data["ipa"],
|
| 367 |
-
"issues": self._get_word_issues(word, phoneme_comparisons),
|
| 368 |
}
|
| 369 |
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
wrong_words = []
|
| 380 |
-
|
| 381 |
-
for word_highlight in word_highlights:
|
| 382 |
-
if word_highlight["score"] < 0.6: # Threshold for "wrong"
|
| 383 |
-
word = word_highlight["word"]
|
| 384 |
-
|
| 385 |
-
# Find specific issues for this word
|
| 386 |
-
word_issues = []
|
| 387 |
-
wrong_phonemes = []
|
| 388 |
-
missing_phonemes = []
|
| 389 |
-
|
| 390 |
-
for comparison in phoneme_comparisons:
|
| 391 |
-
if comparison.get("word") == word:
|
| 392 |
-
if comparison["status"] == "wrong":
|
| 393 |
-
wrong_phonemes.append(
|
| 394 |
-
{
|
| 395 |
-
"expected": comparison["reference_phoneme"],
|
| 396 |
-
"actual": comparison["learner_phoneme"],
|
| 397 |
-
}
|
| 398 |
-
)
|
| 399 |
-
elif comparison["status"] == "missing":
|
| 400 |
-
missing_phonemes.append(comparison["reference_phoneme"])
|
| 401 |
-
|
| 402 |
-
if wrong_phonemes:
|
| 403 |
-
word_issues.append(
|
| 404 |
-
f"Wrong sounds: {', '.join([p['expected'] for p in wrong_phonemes])}"
|
| 405 |
-
)
|
| 406 |
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
"
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
"missing_phonemes": missing_phonemes,
|
| 418 |
-
"tips": self._get_pronunciation_tips(
|
| 419 |
-
word, wrong_phonemes, missing_phonemes
|
| 420 |
),
|
|
|
|
|
|
|
|
|
|
| 421 |
}
|
| 422 |
|
| 423 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
|
| 425 |
-
return
|
| 426 |
|
| 427 |
-
def
|
| 428 |
-
"""
|
| 429 |
-
if
|
| 430 |
-
return
|
| 431 |
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
|
| 436 |
-
|
|
|
|
|
|
|
| 437 |
|
| 438 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
self,
|
|
|
|
|
|
|
|
|
|
| 440 |
overall_score: float,
|
| 441 |
-
wrong_words: List[Dict],
|
| 442 |
-
phoneme_comparisons: List[Dict],
|
| 443 |
) -> List[str]:
|
| 444 |
-
"""Generate
|
| 445 |
-
|
| 446 |
feedback = []
|
| 447 |
|
| 448 |
-
# Overall feedback
|
| 449 |
-
if overall_score >= 0.
|
| 450 |
-
feedback.append(
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
elif overall_score >= 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
feedback.append(
|
| 455 |
-
"
|
| 456 |
)
|
| 457 |
else:
|
| 458 |
-
feedback.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 459 |
|
| 460 |
-
#
|
| 461 |
-
if
|
| 462 |
-
|
| 463 |
-
|
|
|
|
| 464 |
|
| 465 |
# Phoneme-specific feedback for Vietnamese speakers
|
| 466 |
-
|
| 467 |
-
for
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
|
|
|
| 481 |
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 485 |
)
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
feedback.append(f"Âm {phoneme}: {vietnamese_tips[phoneme]}")
|
| 489 |
|
| 490 |
return feedback
|
| 491 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 492 |
def _get_word_status(self, score: float) -> str:
|
| 493 |
"""Get word status from score"""
|
| 494 |
if score >= 0.8:
|
|
@@ -500,215 +1155,474 @@ class SimplePronunciationAssessor:
|
|
| 500 |
else:
|
| 501 |
return "poor"
|
| 502 |
|
| 503 |
-
def
|
| 504 |
-
"""Get
|
| 505 |
-
|
| 506 |
-
return "#22c55e" # Green
|
| 507 |
-
elif score >= 0.6:
|
| 508 |
-
return "#84cc16" # Light green
|
| 509 |
-
elif score >= 0.4:
|
| 510 |
-
return "#eab308" # Yellow
|
| 511 |
-
else:
|
| 512 |
-
return "#ef4444" # Red
|
| 513 |
-
|
| 514 |
-
def _get_word_issues(self, word: str, phoneme_comparisons: List[Dict]) -> List[str]:
|
| 515 |
-
"""Get specific issues for a word"""
|
| 516 |
-
issues = []
|
| 517 |
-
|
| 518 |
-
word_comparisons = [c for c in phoneme_comparisons if c.get("word") == word]
|
| 519 |
-
|
| 520 |
-
wrong_count = len([c for c in word_comparisons if c["status"] == "wrong"])
|
| 521 |
-
missing_count = len([c for c in word_comparisons if c["status"] == "missing"])
|
| 522 |
-
|
| 523 |
-
if wrong_count > 0:
|
| 524 |
-
issues.append(f"{wrong_count} sai âm")
|
| 525 |
-
if missing_count > 0:
|
| 526 |
-
issues.append(f"{missing_count} thiếu âm")
|
| 527 |
-
|
| 528 |
-
return issues
|
| 529 |
-
|
| 530 |
-
def _get_pronunciation_tips(
|
| 531 |
-
self, word: str, wrong_phonemes: List[Dict], missing_phonemes: List[str]
|
| 532 |
-
) -> List[str]:
|
| 533 |
-
"""Get pronunciation tips for wrong words"""
|
| 534 |
-
tips = []
|
| 535 |
-
|
| 536 |
-
# Tips for specific problematic phonemes
|
| 537 |
-
phoneme_tips = {
|
| 538 |
-
"TH": "Đặt lưỡi giữa răng trên và dưới, thổi nhẹ",
|
| 539 |
-
"DH": "Giống TH nhưng rung dây thanh âm",
|
| 540 |
-
"V": "Chạm môi dưới vào răng trên, không dùng cả hai môi",
|
| 541 |
-
"R": "Cuộn lưỡi nhưng không chạm vào vòm miệng",
|
| 542 |
-
"L": "Đầu lưỡi chạm vào vòm miệng sau răng",
|
| 543 |
-
"Z": "Giống âm S nhưng có rung dây thanh âm",
|
| 544 |
-
}
|
| 545 |
-
|
| 546 |
-
# Add tips for wrong phonemes
|
| 547 |
-
for wrong in wrong_phonemes:
|
| 548 |
-
expected = wrong["expected"]
|
| 549 |
-
if expected in phoneme_tips:
|
| 550 |
-
tips.append(f"Âm {expected}: {phoneme_tips[expected]}")
|
| 551 |
-
|
| 552 |
-
# Add tips for missing phonemes
|
| 553 |
-
for missing in missing_phonemes:
|
| 554 |
-
if missing in phoneme_tips:
|
| 555 |
-
tips.append(f"Thiếu âm {missing}: {phoneme_tips[missing]}")
|
| 556 |
-
|
| 557 |
-
# General tip if no specific tips
|
| 558 |
-
if not tips:
|
| 559 |
-
tips.append(f"Luyện tập từ '{word}' chậm và rõ ràng")
|
| 560 |
-
|
| 561 |
-
return tips
|
| 562 |
|
| 563 |
|
| 564 |
# =============================================================================
|
| 565 |
-
#
|
| 566 |
# =============================================================================
|
| 567 |
|
| 568 |
-
# Initialize assessor
|
| 569 |
-
assessor = SimplePronunciationAssessor()
|
| 570 |
|
|
|
|
|
|
|
| 571 |
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
return int(obj)
|
| 576 |
-
elif isinstance(obj, np.floating):
|
| 577 |
-
return float(obj)
|
| 578 |
-
elif isinstance(obj, np.ndarray):
|
| 579 |
-
return obj.tolist()
|
| 580 |
-
elif isinstance(obj, dict):
|
| 581 |
-
return {key: convert_numpy_types(value) for key, value in obj.items()}
|
| 582 |
-
elif isinstance(obj, list):
|
| 583 |
-
return [convert_numpy_types(item) for item in obj]
|
| 584 |
-
else:
|
| 585 |
-
return obj
|
| 586 |
|
| 587 |
|
| 588 |
-
@router.post("/assess", response_model=
|
| 589 |
async def assess_pronunciation(
|
| 590 |
-
audio: UploadFile = File(..., description="Audio file
|
| 591 |
-
reference_text: str = Form(..., description="
|
|
|
|
| 592 |
):
|
| 593 |
"""
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
Input: Audio file + Reference text
|
| 597 |
-
Output: Word highlights + Phoneme differences + Wrong words
|
| 598 |
-
|
| 599 |
-
Features:
|
| 600 |
-
- Whisper ASR for transcript
|
| 601 |
-
- CMU Dict phoneme mapping
|
| 602 |
-
- Vietnamese-optimized comparison
|
| 603 |
-
- Simple UI-ready output
|
| 604 |
"""
|
| 605 |
|
| 606 |
import time
|
| 607 |
|
| 608 |
start_time = time.time()
|
| 609 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 610 |
# Validate inputs
|
| 611 |
if not reference_text.strip():
|
|
|
|
| 612 |
raise HTTPException(status_code=400, detail="Reference text cannot be empty")
|
| 613 |
|
| 614 |
-
if len(reference_text) >
|
|
|
|
| 615 |
raise HTTPException(
|
| 616 |
-
status_code=400, detail="Reference text too long (max
|
| 617 |
)
|
| 618 |
|
| 619 |
-
# Check
|
|
|
|
| 620 |
if not re.match(r"^[a-zA-Z\s\'\-\.!?,;:]+$", reference_text):
|
|
|
|
|
|
|
| 621 |
raise HTTPException(
|
| 622 |
status_code=400,
|
| 623 |
-
detail="Text
|
| 624 |
)
|
| 625 |
|
| 626 |
try:
|
| 627 |
-
# Save uploaded file
|
|
|
|
|
|
|
| 628 |
file_extension = ".wav"
|
| 629 |
-
if audio.filename
|
| 630 |
-
file_extension = f".{audio.filename.split('.')[-1]}"
|
| 631 |
-
|
| 632 |
with tempfile.NamedTemporaryFile(
|
| 633 |
delete=False, suffix=file_extension
|
| 634 |
) as tmp_file:
|
| 635 |
content = await audio.read()
|
| 636 |
tmp_file.write(content)
|
| 637 |
tmp_file.flush()
|
|
|
|
|
|
|
| 638 |
|
| 639 |
-
|
|
|
|
|
|
|
|
|
|
| 640 |
|
| 641 |
-
#
|
| 642 |
-
result = assessor.assess_pronunciation(tmp_file.name, reference_text)
|
| 643 |
-
|
| 644 |
-
# Clean up temporary file
|
| 645 |
os.unlink(tmp_file.name)
|
| 646 |
|
| 647 |
-
#
|
| 648 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 649 |
|
| 650 |
processing_time = time.time() - start_time
|
| 651 |
-
print(
|
| 652 |
-
|
| 653 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 654 |
|
| 655 |
except Exception as e:
|
| 656 |
-
print(
|
| 657 |
import traceback
|
| 658 |
-
|
| 659 |
traceback.print_exc()
|
| 660 |
-
raise HTTPException(status_code=500, detail=f"
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
# =============================================================================
|
| 664 |
-
# UTILITY ENDPOINTS
|
| 665 |
-
# =============================================================================
|
| 666 |
|
| 667 |
|
| 668 |
@router.get("/phonemes/{word}")
|
| 669 |
async def get_word_phonemes(word: str):
|
| 670 |
-
"""Get phoneme
|
| 671 |
try:
|
| 672 |
-
|
| 673 |
|
| 674 |
-
#
|
| 675 |
-
|
| 676 |
-
for phoneme in phoneme_data["phonemes"]:
|
| 677 |
-
difficulty = assessor.comparator.difficulty_map.get(phoneme, 0.3)
|
| 678 |
-
difficulty_scores.append(difficulty)
|
| 679 |
|
| 680 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 681 |
|
| 682 |
return {
|
| 683 |
"word": word,
|
| 684 |
-
"phonemes":
|
| 685 |
-
"
|
| 686 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 687 |
"difficulty_level": (
|
| 688 |
"hard"
|
| 689 |
-
if
|
| 690 |
-
else "medium" if
|
| 691 |
),
|
| 692 |
-
"
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
"difficulty": assessor.comparator.difficulty_map.get(p, 0.3),
|
| 696 |
-
}
|
| 697 |
-
for p in phoneme_data["phonemes"]
|
| 698 |
-
if assessor.comparator.difficulty_map.get(p, 0.3) > 0.6
|
| 699 |
-
],
|
| 700 |
}
|
| 701 |
|
| 702 |
except Exception as e:
|
| 703 |
-
raise HTTPException(status_code=500, detail=f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 704 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 705 |
|
| 706 |
-
@router.get("/health")
|
| 707 |
-
async def health_check():
|
| 708 |
-
"""Simple health check endpoint"""
|
| 709 |
return {
|
| 710 |
-
"
|
| 711 |
-
"
|
| 712 |
-
"
|
| 713 |
-
"vietnamese_optimized": True,
|
| 714 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ENHANCED PRONUNCIATION API - MULTI-WORD SUPPORT
|
| 2 |
+
# Supports any English word using CMU Dict + phoneme libraries
|
| 3 |
|
| 4 |
from fastapi import FastAPI, UploadFile, File, Form, HTTPException, APIRouter
|
| 5 |
from fastapi.middleware.cors import CORSMiddleware
|
| 6 |
from pydantic import BaseModel
|
| 7 |
+
from typing import List, Dict, Optional, Tuple
|
| 8 |
import tempfile
|
| 9 |
import os
|
| 10 |
import numpy as np
|
| 11 |
+
import librosa
|
| 12 |
import nltk
|
| 13 |
import eng_to_ipa as ipa
|
| 14 |
+
import pronouncing
|
| 15 |
+
import requests
|
| 16 |
+
import json
|
| 17 |
import re
|
| 18 |
from collections import defaultdict
|
| 19 |
import warnings
|
|
|
|
| 23 |
# Download required NLTK data
|
| 24 |
try:
|
| 25 |
nltk.download("cmudict", quiet=True)
|
| 26 |
+
nltk.download("punkt", quiet=True)
|
| 27 |
from nltk.corpus import cmudict
|
| 28 |
except:
|
| 29 |
print("Warning: NLTK data not available")
|
|
|
|
| 31 |
# =============================================================================
|
| 32 |
# MODELS
|
| 33 |
# =============================================================================
|
| 34 |
+
router = APIRouter(prefix="/speaking", tags=["AI"])
|
| 35 |
|
|
|
|
| 36 |
|
| 37 |
+
class PronunciationResult(BaseModel):
|
|
|
|
|
|
|
| 38 |
overall_score: float
|
| 39 |
+
status: str
|
|
|
|
|
|
|
| 40 |
feedback: List[str]
|
| 41 |
+
words: List[Dict]
|
| 42 |
+
phoneme_details: List[Dict]
|
| 43 |
+
audio_info: Dict
|
| 44 |
+
processing_time: float
|
| 45 |
+
difficulty_analysis: Dict
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class WordPhonemeInfo(BaseModel):
|
| 49 |
+
word: str
|
| 50 |
+
phonemes: List[str]
|
| 51 |
+
ipa_transcription: str
|
| 52 |
+
syllables: List[str]
|
| 53 |
+
stress_pattern: List[int]
|
| 54 |
|
| 55 |
|
| 56 |
# =============================================================================
|
| 57 |
+
# ENHANCED PHONEME PROCESSOR
|
| 58 |
# =============================================================================
|
| 59 |
|
| 60 |
|
| 61 |
+
class EnhancedPhonemeProcessor:
|
| 62 |
+
"""Advanced phoneme processing with multiple dictionaries"""
|
| 63 |
|
| 64 |
def __init__(self):
|
| 65 |
+
self.sample_rate = 16000
|
| 66 |
+
|
| 67 |
+
# Load CMU dictionary
|
| 68 |
try:
|
| 69 |
self.cmu_dict = cmudict.dict()
|
| 70 |
except:
|
| 71 |
self.cmu_dict = {}
|
| 72 |
print("Warning: CMU dictionary not available")
|
| 73 |
|
| 74 |
+
# Load comprehensive phoneme acoustic models
|
| 75 |
+
self.phoneme_models = self._load_comprehensive_phoneme_models()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
# Phoneme difficulty for Vietnamese speakers
|
| 78 |
+
self.difficulty_map = {
|
| 79 |
+
# Very difficult for Vietnamese
|
| 80 |
+
"TH": 0.9, # think, that
|
| 81 |
+
"DH": 0.9, # this, then
|
| 82 |
+
"V": 0.8, # very, love
|
| 83 |
+
"Z": 0.8, # zoo, rise
|
| 84 |
+
"ZH": 0.9, # measure, vision
|
| 85 |
+
"R": 0.7, # red, car
|
| 86 |
+
"L": 0.6, # love, well
|
| 87 |
+
"W": 0.5, # water, well
|
| 88 |
+
# Moderately difficult
|
| 89 |
+
"F": 0.4, # fish, life
|
| 90 |
+
"S": 0.3, # see, this
|
| 91 |
+
"SH": 0.5, # shoe, fish
|
| 92 |
+
"CH": 0.4, # chair, much
|
| 93 |
+
"JH": 0.5, # job, bridge
|
| 94 |
+
# Vowels - challenging distinctions
|
| 95 |
+
"IY": 0.3, # beat
|
| 96 |
+
"IH": 0.6, # bit
|
| 97 |
+
"EY": 0.4, # bait
|
| 98 |
+
"EH": 0.5, # bet
|
| 99 |
+
"AE": 0.7, # bat
|
| 100 |
+
"AH": 0.4, # but
|
| 101 |
+
"AO": 0.6, # bought
|
| 102 |
+
"OW": 0.4, # boat
|
| 103 |
+
"UH": 0.6, # book
|
| 104 |
+
"UW": 0.4, # boot
|
| 105 |
+
# Easier sounds
|
| 106 |
+
"P": 0.2,
|
| 107 |
+
"B": 0.2,
|
| 108 |
+
"T": 0.2,
|
| 109 |
+
"D": 0.2,
|
| 110 |
+
"K": 0.2,
|
| 111 |
+
"G": 0.2,
|
| 112 |
+
"M": 0.2,
|
| 113 |
+
"N": 0.2,
|
| 114 |
+
"NG": 0.3,
|
| 115 |
+
}
|
| 116 |
|
| 117 |
+
def get_word_phonemes(self, word: str) -> WordPhonemeInfo:
|
| 118 |
+
"""Get comprehensive phoneme info for any English word"""
|
| 119 |
+
word_lower = word.lower().strip()
|
| 120 |
|
| 121 |
+
# Method 1: CMU Dictionary (most reliable)
|
| 122 |
+
cmu_phonemes = []
|
| 123 |
if word_lower in self.cmu_dict:
|
| 124 |
+
# Get first pronunciation variant
|
| 125 |
+
cmu_phonemes = self.cmu_dict[word_lower][0]
|
| 126 |
+
# Remove stress markers (0,1,2) from vowels
|
| 127 |
+
cmu_phonemes = [re.sub(r"[0-9]", "", p) for p in cmu_phonemes]
|
| 128 |
+
|
| 129 |
+
# Method 2: eng_to_ipa library
|
| 130 |
+
ipa_transcription = ""
|
| 131 |
+
try:
|
| 132 |
+
ipa_transcription = ipa.convert(word)
|
| 133 |
+
except:
|
| 134 |
+
ipa_transcription = f"/{word}/"
|
| 135 |
|
| 136 |
+
# Method 3: pronouncing library for syllables
|
| 137 |
+
syllables = []
|
| 138 |
try:
|
| 139 |
+
syllable_count = pronouncing.syllable_count(word)
|
| 140 |
+
# Simple syllable division
|
| 141 |
+
if syllable_count and len(word) > syllable_count:
|
| 142 |
+
syllable_length = len(word) // syllable_count
|
| 143 |
+
syllables = [
|
| 144 |
+
word[i : i + syllable_length]
|
| 145 |
+
for i in range(0, len(word), syllable_length)
|
| 146 |
+
]
|
| 147 |
+
else:
|
| 148 |
+
syllables = [word]
|
| 149 |
except:
|
| 150 |
+
syllables = [word]
|
| 151 |
+
|
| 152 |
+
# Extract stress pattern from CMU
|
| 153 |
+
stress_pattern = []
|
| 154 |
+
if word_lower in self.cmu_dict:
|
| 155 |
+
for phoneme in self.cmu_dict[word_lower][0]:
|
| 156 |
+
stress = re.findall(r"[0-9]", phoneme)
|
| 157 |
+
if stress:
|
| 158 |
+
stress_pattern.append(int(stress[0]))
|
| 159 |
+
|
| 160 |
+
# Fallback phonemes if CMU not available
|
| 161 |
+
if not cmu_phonemes:
|
| 162 |
+
cmu_phonemes = self._estimate_phonemes(word)
|
| 163 |
+
|
| 164 |
+
return WordPhonemeInfo(
|
| 165 |
+
word=word,
|
| 166 |
+
phonemes=cmu_phonemes,
|
| 167 |
+
ipa_transcription=ipa_transcription,
|
| 168 |
+
syllables=syllables,
|
| 169 |
+
stress_pattern=stress_pattern,
|
| 170 |
+
)
|
| 171 |
|
| 172 |
def _estimate_phonemes(self, word: str) -> List[str]:
|
| 173 |
"""Estimate phonemes for unknown words"""
|
| 174 |
+
# Simple grapheme-to-phoneme mapping
|
| 175 |
phoneme_map = {
|
| 176 |
"ch": ["CH"],
|
| 177 |
"sh": ["SH"],
|
|
|
|
| 213 |
|
| 214 |
while i < len(word):
|
| 215 |
# Check 2-letter combinations first
|
| 216 |
+
if i < len(word) - 1:
|
| 217 |
two_char = word[i : i + 2]
|
| 218 |
if two_char in phoneme_map:
|
| 219 |
phonemes.extend(phoneme_map[two_char])
|
|
|
|
| 229 |
|
| 230 |
return phonemes
|
| 231 |
|
| 232 |
+
def _load_comprehensive_phoneme_models(self) -> Dict:
|
| 233 |
+
"""Load comprehensive phoneme acoustic models"""
|
| 234 |
+
# Extended phoneme set với acoustic characteristics
|
| 235 |
+
models = {}
|
| 236 |
+
|
| 237 |
+
# VOWELS
|
| 238 |
+
vowel_models = {
|
| 239 |
+
"IY": {"f1": 270, "f2": 2300, "duration": 150, "type": "vowel"}, # beat
|
| 240 |
+
"IH": {"f1": 390, "f2": 1990, "duration": 120, "type": "vowel"}, # bit
|
| 241 |
+
"EY": {"f1": 400, "f2": 2100, "duration": 160, "type": "vowel"}, # bait
|
| 242 |
+
"EH": {"f1": 550, "f2": 1770, "duration": 130, "type": "vowel"}, # bet
|
| 243 |
+
"AE": {"f1": 690, "f2": 1660, "duration": 140, "type": "vowel"}, # bat
|
| 244 |
+
"AH": {"f1": 640, "f2": 1190, "duration": 110, "type": "vowel"}, # but
|
| 245 |
+
"AO": {"f1": 570, "f2": 840, "duration": 150, "type": "vowel"}, # bought
|
| 246 |
+
"OW": {"f1": 430, "f2": 1020, "duration": 160, "type": "vowel"}, # boat
|
| 247 |
+
"UH": {"f1": 450, "f2": 1030, "duration": 120, "type": "vowel"}, # book
|
| 248 |
+
"UW": {"f1": 310, "f2": 870, "duration": 150, "type": "vowel"}, # boot
|
| 249 |
+
"ER": {"f1": 490, "f2": 1350, "duration": 140, "type": "vowel"}, # bird
|
| 250 |
+
"AY": {"f1": 640, "f2": 1190, "duration": 180, "type": "vowel"}, # bite
|
| 251 |
+
"AW": {"f1": 640, "f2": 1190, "duration": 180, "type": "vowel"}, # bout
|
| 252 |
+
"OY": {"f1": 570, "f2": 840, "duration": 180, "type": "vowel"}, # boy
|
| 253 |
}
|
| 254 |
|
| 255 |
+
# CONSONANTS
|
| 256 |
+
consonant_models = {
|
| 257 |
+
# Stops
|
| 258 |
+
"P": {
|
| 259 |
+
"burst_energy": 0.8,
|
| 260 |
+
"duration": 80,
|
| 261 |
+
"type": "stop",
|
| 262 |
+
"voicing": False,
|
| 263 |
+
},
|
| 264 |
+
"B": {"burst_energy": 0.7, "duration": 85, "type": "stop", "voicing": True},
|
| 265 |
+
"T": {
|
| 266 |
+
"burst_energy": 0.9,
|
| 267 |
+
"duration": 75,
|
| 268 |
+
"type": "stop",
|
| 269 |
+
"voicing": False,
|
| 270 |
+
},
|
| 271 |
+
"D": {
|
| 272 |
+
"burst_energy": 0.75,
|
| 273 |
+
"duration": 80,
|
| 274 |
+
"type": "stop",
|
| 275 |
+
"voicing": True,
|
| 276 |
+
},
|
| 277 |
+
"K": {
|
| 278 |
+
"burst_energy": 0.85,
|
| 279 |
+
"duration": 70,
|
| 280 |
+
"type": "stop",
|
| 281 |
+
"voicing": False,
|
| 282 |
+
},
|
| 283 |
+
"G": {"burst_energy": 0.7, "duration": 75, "type": "stop", "voicing": True},
|
| 284 |
+
# Fricatives (challenging for Vietnamese)
|
| 285 |
+
"F": {
|
| 286 |
+
"high_freq": True,
|
| 287 |
+
"duration": 120,
|
| 288 |
+
"type": "fricative",
|
| 289 |
+
"voicing": False,
|
| 290 |
+
},
|
| 291 |
+
"V": {
|
| 292 |
+
"high_freq": True,
|
| 293 |
+
"duration": 110,
|
| 294 |
+
"type": "fricative",
|
| 295 |
+
"voicing": True,
|
| 296 |
+
},
|
| 297 |
+
"TH": {
|
| 298 |
+
"high_freq": True,
|
| 299 |
+
"duration": 130,
|
| 300 |
+
"type": "fricative",
|
| 301 |
+
"voicing": False,
|
| 302 |
+
}, # think
|
| 303 |
+
"DH": {
|
| 304 |
+
"high_freq": True,
|
| 305 |
+
"duration": 120,
|
| 306 |
+
"type": "fricative",
|
| 307 |
+
"voicing": True,
|
| 308 |
+
}, # this
|
| 309 |
+
"S": {
|
| 310 |
+
"very_high_freq": True,
|
| 311 |
+
"duration": 140,
|
| 312 |
+
"type": "fricative",
|
| 313 |
+
"voicing": False,
|
| 314 |
+
},
|
| 315 |
+
"Z": {
|
| 316 |
+
"very_high_freq": True,
|
| 317 |
+
"duration": 130,
|
| 318 |
+
"type": "fricative",
|
| 319 |
+
"voicing": True,
|
| 320 |
+
},
|
| 321 |
+
"SH": {
|
| 322 |
+
"high_freq": True,
|
| 323 |
+
"duration": 150,
|
| 324 |
+
"type": "fricative",
|
| 325 |
+
"voicing": False,
|
| 326 |
+
}, # shoe
|
| 327 |
+
"ZH": {
|
| 328 |
+
"high_freq": True,
|
| 329 |
+
"duration": 140,
|
| 330 |
+
"type": "fricative",
|
| 331 |
+
"voicing": True,
|
| 332 |
+
}, # measure
|
| 333 |
+
"HH": {
|
| 334 |
+
"breathy": True,
|
| 335 |
+
"duration": 100,
|
| 336 |
+
"type": "fricative",
|
| 337 |
+
"voicing": False,
|
| 338 |
+
}, # hello
|
| 339 |
+
# Affricates
|
| 340 |
+
"CH": {
|
| 341 |
+
"burst_fricative": True,
|
| 342 |
+
"duration": 160,
|
| 343 |
+
"type": "affricate",
|
| 344 |
+
"voicing": False,
|
| 345 |
+
}, # chair
|
| 346 |
+
"JH": {
|
| 347 |
+
"burst_fricative": True,
|
| 348 |
+
"duration": 150,
|
| 349 |
+
"type": "affricate",
|
| 350 |
+
"voicing": True,
|
| 351 |
+
}, # job
|
| 352 |
+
# Nasals
|
| 353 |
+
"M": {"nasal": True, "duration": 100, "type": "nasal", "voicing": True},
|
| 354 |
+
"N": {"nasal": True, "duration": 95, "type": "nasal", "voicing": True},
|
| 355 |
+
"NG": {
|
| 356 |
+
"nasal": True,
|
| 357 |
+
"duration": 105,
|
| 358 |
+
"type": "nasal",
|
| 359 |
+
"voicing": True,
|
| 360 |
+
}, # ring
|
| 361 |
+
# Liquids (challenging L/R distinction)
|
| 362 |
+
"L": {"lateral": True, "duration": 90, "type": "liquid", "voicing": True},
|
| 363 |
+
"R": {"retroflex": True, "duration": 95, "type": "liquid", "voicing": True},
|
| 364 |
+
# Glides
|
| 365 |
+
"Y": {"glide": True, "duration": 70, "type": "glide", "voicing": True},
|
| 366 |
+
"W": {"glide": True, "duration": 75, "type": "glide", "voicing": True},
|
| 367 |
}
|
| 368 |
|
| 369 |
+
# Combine models
|
| 370 |
+
models.update(vowel_models)
|
| 371 |
+
models.update(consonant_models)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
|
| 373 |
+
return models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
|
| 375 |
+
def get_difficulty_score(self, phonemes: List[str]) -> float:
|
| 376 |
+
"""Calculate difficulty score for Vietnamese speakers"""
|
| 377 |
+
if not phonemes:
|
| 378 |
+
return 0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
+
difficulties = []
|
| 381 |
+
for phoneme in phonemes:
|
| 382 |
+
# Remove stress markers
|
| 383 |
+
clean_phoneme = re.sub(r"[0-9]", "", phoneme)
|
| 384 |
+
difficulty = self.difficulty_map.get(clean_phoneme, 0.3)
|
| 385 |
+
difficulties.append(difficulty)
|
| 386 |
+
|
| 387 |
+
return np.mean(difficulties)
|
| 388 |
+
|
| 389 |
+
def score_phoneme_advanced(
|
| 390 |
+
self, phoneme: str, segment_features: Dict, context: Dict = None
|
| 391 |
+
) -> float:
|
| 392 |
+
"""Advanced phoneme scoring với context"""
|
| 393 |
+
clean_phoneme = re.sub(r"[0-9]", "", phoneme)
|
| 394 |
+
|
| 395 |
+
if clean_phoneme not in self.phoneme_models:
|
| 396 |
+
return 0.5 # Unknown phoneme
|
| 397 |
+
|
| 398 |
+
model = self.phoneme_models[clean_phoneme]
|
| 399 |
+
score = 0.0
|
| 400 |
+
|
| 401 |
+
# Type-specific scoring
|
| 402 |
+
if model["type"] == "vowel":
|
| 403 |
+
score = self._score_vowel(clean_phoneme, segment_features, model)
|
| 404 |
+
elif model["type"] == "fricative":
|
| 405 |
+
score = self._score_fricative(clean_phoneme, segment_features, model)
|
| 406 |
+
elif model["type"] == "stop":
|
| 407 |
+
score = self._score_stop(clean_phoneme, segment_features, model)
|
| 408 |
+
elif model["type"] in ["liquid", "nasal", "glide", "affricate"]:
|
| 409 |
+
score = self._score_other_consonant(clean_phoneme, segment_features, model)
|
| 410 |
+
|
| 411 |
+
# Context adjustments
|
| 412 |
+
if context:
|
| 413 |
+
score = self._apply_context_adjustments(score, clean_phoneme, context)
|
| 414 |
+
|
| 415 |
+
# Difficulty adjustment for Vietnamese speakers
|
| 416 |
+
difficulty = self.difficulty_map.get(clean_phoneme, 0.3)
|
| 417 |
+
# Easier scoring for more difficult phonemes
|
| 418 |
+
adjusted_score = score + (difficulty * 0.1)
|
| 419 |
+
|
| 420 |
+
return np.clip(adjusted_score, 0, 1)
|
| 421 |
+
|
| 422 |
+
def _score_vowel(self, phoneme: str, features: Dict, model: Dict) -> float:
|
| 423 |
+
"""Score vowel phoneme"""
|
| 424 |
+
score = 0.0
|
| 425 |
+
|
| 426 |
+
# Energy check (vowels should have good energy)
|
| 427 |
+
if features.get("rms_mean", 0) > 0.01:
|
| 428 |
+
score += 0.3
|
| 429 |
+
|
| 430 |
+
# Spectral characteristics
|
| 431 |
+
centroid = features.get("spectral_centroid_mean", 0)
|
| 432 |
+
target_f2 = model.get("f2", 1500)
|
| 433 |
+
|
| 434 |
+
# F2 approximation from spectral centroid
|
| 435 |
+
f2_error = abs(centroid - target_f2) / target_f2
|
| 436 |
+
f2_score = max(0, 1 - f2_error)
|
| 437 |
+
score += 0.4 * f2_score
|
| 438 |
+
|
| 439 |
+
# Stability (vowels should be stable)
|
| 440 |
+
zcr = features.get("zcr_mean", 0)
|
| 441 |
+
if zcr < 0.1: # Low zero crossing for vowels
|
| 442 |
+
score += 0.3
|
| 443 |
+
|
| 444 |
+
return score
|
| 445 |
+
|
| 446 |
+
def _score_fricative(self, phoneme: str, features: Dict, model: Dict) -> float:
|
| 447 |
+
"""Score fricative phoneme"""
|
| 448 |
+
score = 0.0
|
| 449 |
+
|
| 450 |
+
# High frequency content for fricatives
|
| 451 |
+
centroid = features.get("spectral_centroid_mean", 0)
|
| 452 |
+
zcr = features.get("zcr_mean", 0)
|
| 453 |
+
|
| 454 |
+
if model.get("very_high_freq"): # S, Z sounds
|
| 455 |
+
if centroid > 3000:
|
| 456 |
+
score += 0.4
|
| 457 |
+
if zcr > 0.2:
|
| 458 |
+
score += 0.4
|
| 459 |
+
elif model.get("high_freq"): # F, V, TH, DH, SH, ZH
|
| 460 |
+
if centroid > 1500:
|
| 461 |
+
score += 0.4
|
| 462 |
+
if zcr > 0.15:
|
| 463 |
+
score += 0.3
|
| 464 |
+
|
| 465 |
+
# Voicing check
|
| 466 |
+
energy = features.get("rms_mean", 0)
|
| 467 |
+
if model.get("voicing") and energy > 0.01: # Voiced fricatives
|
| 468 |
+
score += 0.2
|
| 469 |
+
elif not model.get("voicing") and energy < 0.05: # Voiceless fricatives
|
| 470 |
+
score += 0.2
|
| 471 |
+
|
| 472 |
+
return score
|
| 473 |
+
|
| 474 |
+
def _score_stop(self, phoneme: str, features: Dict, model: Dict) -> float:
|
| 475 |
+
"""Score stop consonant"""
|
| 476 |
+
score = 0.0
|
| 477 |
+
|
| 478 |
+
# Burst energy
|
| 479 |
+
energy = features.get("rms_mean", 0)
|
| 480 |
+
burst_threshold = 0.02 if model.get("voicing") else 0.03
|
| 481 |
+
|
| 482 |
+
if energy > burst_threshold:
|
| 483 |
+
score += 0.6
|
| 484 |
+
|
| 485 |
+
# Duration check
|
| 486 |
+
# Stops should be relatively short
|
| 487 |
+
score += 0.4 # Base score for presence
|
| 488 |
+
|
| 489 |
+
return score
|
| 490 |
+
|
| 491 |
+
def _score_other_consonant(
|
| 492 |
+
self, phoneme: str, features: Dict, model: Dict
|
| 493 |
+
) -> float:
|
| 494 |
+
"""Score other consonant types"""
|
| 495 |
+
score = 0.0
|
| 496 |
+
|
| 497 |
+
energy = features.get("rms_mean", 0)
|
| 498 |
+
centroid = features.get("spectral_centroid_mean", 0)
|
| 499 |
+
zcr = features.get("zcr_mean", 0)
|
| 500 |
+
|
| 501 |
+
if model["type"] == "liquid":
|
| 502 |
+
# L/R sounds - moderate energy, specific spectral characteristics
|
| 503 |
+
if 0.01 <= energy <= 0.08:
|
| 504 |
+
score += 0.3
|
| 505 |
+
if phoneme == "R" and centroid < 1800: # R lowers F3
|
| 506 |
+
score += 0.4
|
| 507 |
+
elif phoneme == "L" and 1200 <= centroid <= 2200:
|
| 508 |
+
score += 0.4
|
| 509 |
+
score += 0.3 # Base score
|
| 510 |
+
|
| 511 |
+
elif model["type"] == "nasal":
|
| 512 |
+
# Nasal sounds - good energy, specific spectral pattern
|
| 513 |
+
if energy > 0.005:
|
| 514 |
+
score += 0.4
|
| 515 |
+
if 800 <= centroid <= 2000:
|
| 516 |
+
score += 0.3
|
| 517 |
+
score += 0.3
|
| 518 |
+
|
| 519 |
+
elif model["type"] == "glide":
|
| 520 |
+
# W/Y sounds - transition characteristics
|
| 521 |
+
if energy > 0.005:
|
| 522 |
+
score += 0.5
|
| 523 |
+
score += 0.5
|
| 524 |
+
|
| 525 |
+
elif model["type"] == "affricate":
|
| 526 |
+
# CH/JH - combination of stop + fricative
|
| 527 |
+
if energy > 0.02: # Burst component
|
| 528 |
+
score += 0.3
|
| 529 |
+
if zcr > 0.1: # Fricative component
|
| 530 |
+
score += 0.4
|
| 531 |
+
score += 0.3
|
| 532 |
+
|
| 533 |
+
return score
|
| 534 |
+
|
| 535 |
+
def _apply_context_adjustments(
|
| 536 |
+
self, score: float, phoneme: str, context: Dict
|
| 537 |
+
) -> float:
|
| 538 |
+
"""Apply contextual adjustments"""
|
| 539 |
+
# Position in word adjustments
|
| 540 |
+
position = context.get("position", "middle")
|
| 541 |
+
|
| 542 |
+
if position == "initial" and phoneme in ["TH", "DH"]:
|
| 543 |
+
score *= 1.1 # Easier in initial position
|
| 544 |
+
elif position == "final" and phoneme in ["T", "D", "K", "G"]:
|
| 545 |
+
score *= 0.9 # Harder in final position (Vietnamese tendency to drop)
|
| 546 |
+
|
| 547 |
+
# Surrounding phonemes
|
| 548 |
+
prev_phoneme = context.get("prev_phoneme")
|
| 549 |
+
next_phoneme = context.get("next_phoneme")
|
| 550 |
+
|
| 551 |
+
# Consonant clusters (difficult for Vietnamese)
|
| 552 |
+
if (
|
| 553 |
+
prev_phoneme
|
| 554 |
+
and prev_phoneme in ["S", "T", "K"]
|
| 555 |
+
and phoneme in ["T", "K", "P"]
|
| 556 |
+
):
|
| 557 |
+
score *= 0.8 # Consonant clusters are harder
|
| 558 |
+
|
| 559 |
+
return score
|
| 560 |
|
|
|
|
| 561 |
|
| 562 |
+
# =============================================================================
|
| 563 |
+
# ENHANCED PRONUNCIATION ASSESSOR
|
| 564 |
+
# =============================================================================
|
|
|
|
| 565 |
|
| 566 |
|
| 567 |
+
class EnhancedPronunciationAssessor:
|
| 568 |
+
"""Enhanced assessor supporting any English word"""
|
| 569 |
|
| 570 |
def __init__(self):
|
| 571 |
+
self.phoneme_processor = EnhancedPhonemeProcessor()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 572 |
self.sample_rate = 16000
|
| 573 |
|
| 574 |
+
def process_audio_file(self, file_path: str, reference_text: str) -> Dict:
|
| 575 |
+
"""Process audio file with enhanced phoneme analysis"""
|
| 576 |
+
|
| 577 |
+
# Load and validate audio
|
| 578 |
+
audio, sr = librosa.load(file_path, sr=self.sample_rate)
|
| 579 |
+
duration = len(audio) / sr
|
| 580 |
+
max_amplitude = np.max(np.abs(audio))
|
| 581 |
|
| 582 |
+
# Audio quality analysis
|
| 583 |
+
audio_info = self._analyze_audio_quality(audio, duration, max_amplitude)
|
|
|
|
|
|
|
|
|
|
| 584 |
|
| 585 |
+
# Extract comprehensive features
|
| 586 |
+
features = self._extract_comprehensive_features(audio)
|
|
|
|
| 587 |
|
| 588 |
+
# Text analysis
|
| 589 |
+
text_analysis = self._analyze_text(reference_text)
|
|
|
|
| 590 |
|
| 591 |
+
# Pronunciation assessment
|
| 592 |
+
pronunciation_analysis = self._assess_pronunciation(
|
| 593 |
+
audio, features, reference_text, text_analysis
|
|
|
|
| 594 |
)
|
| 595 |
|
| 596 |
+
return {
|
| 597 |
+
"audio_info": audio_info,
|
| 598 |
+
"text_analysis": text_analysis,
|
| 599 |
+
"pronunciation_analysis": pronunciation_analysis,
|
| 600 |
+
"features": features,
|
| 601 |
+
}
|
| 602 |
+
|
| 603 |
+
def _analyze_audio_quality(
|
| 604 |
+
self, audio: np.ndarray, duration: float, max_amplitude: float
|
| 605 |
+
) -> Dict:
|
| 606 |
+
"""Comprehensive audio quality analysis"""
|
| 607 |
+
issues = []
|
| 608 |
+
quality_score = 1.0
|
| 609 |
+
|
| 610 |
+
# Duration checks
|
| 611 |
+
if duration < 0.5:
|
| 612 |
+
issues.append("too_short")
|
| 613 |
+
quality_score *= 0.5
|
| 614 |
+
elif duration > 30:
|
| 615 |
+
issues.append("too_long")
|
| 616 |
+
quality_score *= 0.8
|
| 617 |
+
|
| 618 |
+
# Amplitude checks
|
| 619 |
+
if max_amplitude < 0.005:
|
| 620 |
+
issues.append("too_quiet")
|
| 621 |
+
quality_score *= 0.6
|
| 622 |
+
elif max_amplitude > 0.98:
|
| 623 |
+
issues.append("clipped")
|
| 624 |
+
quality_score *= 0.7
|
| 625 |
+
|
| 626 |
+
# Noise analysis
|
| 627 |
+
noise_floor = np.mean(np.abs(audio[: int(0.1 * len(audio))])) # First 100ms
|
| 628 |
+
if noise_floor > 0.02:
|
| 629 |
+
issues.append("noisy")
|
| 630 |
+
quality_score *= 0.8
|
| 631 |
+
|
| 632 |
+
# Signal-to-noise ratio
|
| 633 |
+
signal_power = np.mean(audio**2)
|
| 634 |
+
snr = 10 * np.log10(signal_power / (noise_floor**2 + 1e-10))
|
| 635 |
+
|
| 636 |
+
return {
|
| 637 |
+
"duration": duration,
|
| 638 |
+
"max_amplitude": max_amplitude,
|
| 639 |
+
"noise_floor": noise_floor,
|
| 640 |
+
"snr": snr,
|
| 641 |
+
"quality_score": quality_score,
|
| 642 |
+
"issues": issues,
|
| 643 |
+
"quality_status": "good" if not issues else ",".join(issues),
|
| 644 |
+
}
|
| 645 |
+
|
| 646 |
+
def _extract_comprehensive_features(self, audio: np.ndarray) -> Dict:
|
| 647 |
+
"""Extract comprehensive acoustic features"""
|
| 648 |
+
features = {}
|
| 649 |
+
|
| 650 |
+
# Basic features
|
| 651 |
+
features["mfcc"] = librosa.feature.mfcc(y=audio, sr=self.sample_rate, n_mfcc=13)
|
| 652 |
+
features["mfcc_mean"] = np.mean(features["mfcc"], axis=1).tolist()
|
| 653 |
+
|
| 654 |
+
# Energy features
|
| 655 |
+
rms = librosa.feature.rms(y=audio, hop_length=512)[0]
|
| 656 |
+
features["rms"] = rms.tolist()
|
| 657 |
+
features["rms_mean"] = float(np.mean(rms))
|
| 658 |
+
features["rms_std"] = float(np.std(rms))
|
| 659 |
+
|
| 660 |
+
# Spectral features
|
| 661 |
+
spectral_centroid = librosa.feature.spectral_centroid(
|
| 662 |
+
y=audio, sr=self.sample_rate
|
| 663 |
+
)[0]
|
| 664 |
+
features["spectral_centroid"] = spectral_centroid.tolist()
|
| 665 |
+
features["spectral_centroid_mean"] = float(np.mean(spectral_centroid))
|
| 666 |
+
features["spectral_centroid_std"] = float(np.std(spectral_centroid))
|
| 667 |
+
|
| 668 |
+
# Additional spectral features
|
| 669 |
+
spectral_bandwidth = librosa.feature.spectral_bandwidth(
|
| 670 |
+
y=audio, sr=self.sample_rate
|
| 671 |
+
)[0]
|
| 672 |
+
features["spectral_bandwidth_mean"] = float(np.mean(spectral_bandwidth))
|
| 673 |
+
|
| 674 |
+
spectral_rolloff = librosa.feature.spectral_rolloff(
|
| 675 |
+
y=audio, sr=self.sample_rate
|
| 676 |
+
)[0]
|
| 677 |
+
features["spectral_rolloff_mean"] = float(np.mean(spectral_rolloff))
|
| 678 |
+
|
| 679 |
+
# Zero crossing rate
|
| 680 |
+
zcr = librosa.feature.zero_crossing_rate(audio, hop_length=512)[0]
|
| 681 |
+
features["zcr"] = zcr.tolist()
|
| 682 |
+
features["zcr_mean"] = float(np.mean(zcr))
|
| 683 |
+
features["zcr_std"] = float(np.std(zcr))
|
| 684 |
+
|
| 685 |
+
# Pitch analysis
|
| 686 |
+
pitches, magnitudes = librosa.piptrack(y=audio, sr=self.sample_rate)
|
| 687 |
+
f0 = []
|
| 688 |
+
for t in range(pitches.shape[1]):
|
| 689 |
+
index = magnitudes[:, t].argmax()
|
| 690 |
+
pitch = pitches[index, t]
|
| 691 |
+
f0.append(
|
| 692 |
+
float(pitch) if pitch > 80 else 0.0
|
| 693 |
+
) # Filter out very low frequencies
|
| 694 |
+
|
| 695 |
+
features["f0"] = f0
|
| 696 |
+
valid_f0 = [f for f in f0 if f > 0]
|
| 697 |
+
features["f0_mean"] = float(np.mean(valid_f0)) if valid_f0 else 0.0
|
| 698 |
+
features["f0_std"] = float(np.std(valid_f0)) if valid_f0 else 0.0
|
| 699 |
+
|
| 700 |
+
# Formant estimation (simplified)
|
| 701 |
+
features["formants"] = self._estimate_formants(audio)
|
| 702 |
+
|
| 703 |
+
return features
|
| 704 |
+
|
| 705 |
+
|
| 706 |
+
|
| 707 |
+
def _analyze_text(self, text: str) -> Dict:
|
| 708 |
+
"""Analyze reference text for phonemes and difficulty"""
|
| 709 |
+
words = text.lower().strip().split()
|
| 710 |
+
text_info = {
|
| 711 |
+
"words": [],
|
| 712 |
+
"total_phonemes": 0,
|
| 713 |
+
"difficulty_score": 0,
|
| 714 |
+
"challenging_sounds": [],
|
| 715 |
+
}
|
| 716 |
+
|
| 717 |
+
all_phonemes = []
|
| 718 |
+
|
| 719 |
+
for word in words:
|
| 720 |
+
word_info = self.phoneme_processor.get_word_phonemes(word)
|
| 721 |
+
|
| 722 |
+
# Calculate word difficulty
|
| 723 |
+
word_difficulty = self.phoneme_processor.get_difficulty_score(
|
| 724 |
+
word_info.phonemes
|
| 725 |
+
)
|
| 726 |
+
|
| 727 |
+
# Find challenging phonemes
|
| 728 |
+
challenging = []
|
| 729 |
+
for phoneme in word_info.phonemes:
|
| 730 |
+
clean_phoneme = re.sub(r"[0-9]", "", phoneme)
|
| 731 |
+
difficulty = self.phoneme_processor.difficulty_map.get(clean_phoneme, 0)
|
| 732 |
+
if difficulty > 0.6:
|
| 733 |
+
challenging.append(clean_phoneme)
|
| 734 |
+
|
| 735 |
+
word_data = {
|
| 736 |
+
"word": word,
|
| 737 |
+
"phonemes": word_info.phonemes,
|
| 738 |
+
"ipa": word_info.ipa_transcription,
|
| 739 |
+
"syllables": word_info.syllables,
|
| 740 |
+
"difficulty": word_difficulty,
|
| 741 |
+
"challenging_phonemes": challenging,
|
| 742 |
+
}
|
| 743 |
+
|
| 744 |
+
text_info["words"].append(word_data)
|
| 745 |
+
all_phonemes.extend(word_info.phonemes)
|
| 746 |
+
text_info["challenging_sounds"].extend(challenging)
|
| 747 |
+
|
| 748 |
+
text_info["total_phonemes"] = len(all_phonemes)
|
| 749 |
+
text_info["difficulty_score"] = self.phoneme_processor.get_difficulty_score(
|
| 750 |
+
all_phonemes
|
| 751 |
)
|
| 752 |
+
text_info["challenging_sounds"] = list(
|
| 753 |
+
set(text_info["challenging_sounds"])
|
| 754 |
+
) # Remove duplicates
|
| 755 |
+
|
| 756 |
+
return text_info
|
| 757 |
+
|
| 758 |
+
def _assess_pronunciation(
|
| 759 |
+
self, audio: np.ndarray, features: Dict, text: str, text_analysis: Dict
|
| 760 |
+
) -> Dict:
|
| 761 |
+
"""Comprehensive pronunciation assessment"""
|
| 762 |
+
words = text.lower().strip().split()
|
| 763 |
+
word_segments = self._segment_words_advanced(audio, features, len(words))
|
| 764 |
+
|
| 765 |
+
word_results = []
|
| 766 |
+
phoneme_results = []
|
| 767 |
+
|
| 768 |
+
for i, word in enumerate(words):
|
| 769 |
+
if i < len(word_segments):
|
| 770 |
+
word_audio = word_segments[i]
|
| 771 |
+
word_info = text_analysis["words"][i]
|
| 772 |
+
|
| 773 |
+
# Assess word
|
| 774 |
+
word_result = self._assess_word_comprehensive(
|
| 775 |
+
word_audio, word_info, features, i, len(words)
|
| 776 |
+
)
|
| 777 |
+
|
| 778 |
+
word_results.append(word_result)
|
| 779 |
+
phoneme_results.extend(word_result["phoneme_details"])
|
| 780 |
|
| 781 |
+
# Calculate overall metrics
|
| 782 |
+
overall_score = (
|
| 783 |
+
np.mean([wr["score"] for wr in word_results]) if word_results else 0.0
|
| 784 |
+
)
|
| 785 |
|
| 786 |
+
# Generate comprehensive feedback
|
| 787 |
+
feedback = self._generate_comprehensive_feedback(
|
| 788 |
+
word_results, text_analysis, features, overall_score
|
| 789 |
+
)
|
| 790 |
|
| 791 |
+
# Difficulty analysis
|
| 792 |
+
difficulty_analysis = self._analyze_difficulty_performance(
|
| 793 |
+
word_results, text_analysis
|
| 794 |
)
|
| 795 |
|
| 796 |
return {
|
|
|
|
| 797 |
"overall_score": overall_score,
|
| 798 |
+
"words": word_results,
|
| 799 |
+
"phoneme_details": phoneme_results,
|
|
|
|
| 800 |
"feedback": feedback,
|
| 801 |
+
"status": self._get_status(overall_score),
|
| 802 |
+
"difficulty_analysis": difficulty_analysis,
|
| 803 |
}
|
| 804 |
|
| 805 |
+
def _segment_words_advanced(
|
| 806 |
+
self, audio: np.ndarray, features: Dict, num_words: int
|
| 807 |
+
) -> List[np.ndarray]:
|
| 808 |
+
"""Advanced word segmentation using energy and spectral cues"""
|
| 809 |
+
if num_words == 1:
|
| 810 |
+
return [audio]
|
| 811 |
+
|
| 812 |
+
# Use RMS energy to find word boundaries
|
| 813 |
+
rms = features["rms"]
|
| 814 |
+
|
| 815 |
+
# Find energy peaks (potential word centers)
|
| 816 |
+
from scipy.signal import find_peaks
|
| 817 |
+
|
| 818 |
+
# Smooth RMS for better peak detection
|
| 819 |
+
window_size = min(5, len(rms) // 4)
|
| 820 |
+
if window_size > 0:
|
| 821 |
+
rms_smooth = np.convolve(
|
| 822 |
+
rms, np.ones(window_size) / window_size, mode="same"
|
| 823 |
+
)
|
| 824 |
+
else:
|
| 825 |
+
rms_smooth = rms
|
| 826 |
+
|
| 827 |
+
peaks, _ = find_peaks(
|
| 828 |
+
rms_smooth,
|
| 829 |
+
height=np.mean(rms_smooth) * 0.5,
|
| 830 |
+
distance=len(rms) // (num_words * 2),
|
| 831 |
+
)
|
| 832 |
+
|
| 833 |
+
# If we don't find enough peaks, fall back to equal division
|
| 834 |
+
if len(peaks) < num_words:
|
| 835 |
+
segment_length = len(audio) // num_words
|
| 836 |
+
segments = []
|
| 837 |
+
for i in range(num_words):
|
| 838 |
+
start = i * segment_length
|
| 839 |
+
end = start + segment_length if i < num_words - 1 else len(audio)
|
| 840 |
+
segments.append(audio[start:end])
|
| 841 |
+
return segments
|
| 842 |
+
|
| 843 |
+
# Use peaks to define word boundaries
|
| 844 |
+
hop_length = 512
|
| 845 |
+
peak_times = librosa.frames_to_samples(peaks, hop_length=hop_length)
|
| 846 |
+
|
| 847 |
+
segments = []
|
| 848 |
+
for i in range(num_words):
|
| 849 |
+
if i == 0:
|
| 850 |
+
start = 0
|
| 851 |
+
end = peak_times[min(i, len(peak_times) - 1)] + len(audio) // (
|
| 852 |
+
num_words * 4
|
| 853 |
+
)
|
| 854 |
+
elif i == num_words - 1:
|
| 855 |
+
start = peak_times[min(i - 1, len(peak_times) - 1)] - len(audio) // (
|
| 856 |
+
num_words * 4
|
| 857 |
+
)
|
| 858 |
+
end = len(audio)
|
| 859 |
+
else:
|
| 860 |
+
start = peak_times[min(i - 1, len(peak_times) - 1)] - len(audio) // (
|
| 861 |
+
num_words * 6
|
| 862 |
+
)
|
| 863 |
+
end = peak_times[min(i, len(peak_times) - 1)] + len(audio) // (
|
| 864 |
+
num_words * 6
|
| 865 |
+
)
|
| 866 |
+
|
| 867 |
+
start = max(0, start)
|
| 868 |
+
end = min(len(audio), end)
|
| 869 |
+
segments.append(audio[start:end])
|
| 870 |
+
|
| 871 |
+
return segments
|
| 872 |
+
|
| 873 |
+
def _assess_word_comprehensive(
|
| 874 |
self,
|
| 875 |
+
word_audio: np.ndarray,
|
| 876 |
+
word_info: Dict,
|
| 877 |
+
global_features: Dict,
|
| 878 |
+
word_index: int,
|
| 879 |
+
total_words: int,
|
| 880 |
+
) -> Dict:
|
| 881 |
+
"""Comprehensive word assessment"""
|
| 882 |
+
if len(word_audio) < 500:
|
| 883 |
+
return {
|
| 884 |
+
"word": word_info["word"],
|
| 885 |
+
"score": 0.2,
|
| 886 |
+
"status": "poor",
|
| 887 |
+
"issues": ["too_short"],
|
| 888 |
+
"phoneme_details": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 889 |
}
|
| 890 |
|
| 891 |
+
# Extract word-level features
|
| 892 |
+
word_features = self._extract_word_features(word_audio)
|
| 893 |
+
|
| 894 |
+
# Assess each phoneme
|
| 895 |
+
phonemes = word_info["phonemes"]
|
| 896 |
+
phoneme_segments = self._segment_phonemes(word_audio, len(phonemes))
|
| 897 |
+
|
| 898 |
+
phoneme_scores = []
|
| 899 |
+
phoneme_details = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 900 |
|
| 901 |
+
for i, (phoneme, segment) in enumerate(zip(phonemes, phoneme_segments)):
|
| 902 |
+
if len(segment) > 100: # Minimum segment length
|
| 903 |
+
segment_features = self._extract_segment_features(segment)
|
| 904 |
+
|
| 905 |
+
# Context information
|
| 906 |
+
context = {
|
| 907 |
+
"position": (
|
| 908 |
+
"initial"
|
| 909 |
+
if i == 0
|
| 910 |
+
else "final" if i == len(phonemes) - 1 else "middle"
|
|
|
|
|
|
|
|
|
|
| 911 |
),
|
| 912 |
+
"prev_phoneme": phonemes[i - 1] if i > 0 else None,
|
| 913 |
+
"next_phoneme": phonemes[i + 1] if i < len(phonemes) - 1 else None,
|
| 914 |
+
"word_position": word_index / total_words,
|
| 915 |
}
|
| 916 |
|
| 917 |
+
score = self.phoneme_processor.score_phoneme_advanced(
|
| 918 |
+
phoneme, segment_features, context
|
| 919 |
+
)
|
| 920 |
+
|
| 921 |
+
phoneme_scores.append(score)
|
| 922 |
+
phoneme_details.append(
|
| 923 |
+
{
|
| 924 |
+
"phoneme": phoneme,
|
| 925 |
+
"score": score,
|
| 926 |
+
"position": context["position"],
|
| 927 |
+
"difficulty": self.phoneme_processor.difficulty_map.get(
|
| 928 |
+
re.sub(r"[0-9]", "", phoneme), 0.3
|
| 929 |
+
),
|
| 930 |
+
"word": word_info["word"],
|
| 931 |
+
}
|
| 932 |
+
)
|
| 933 |
+
|
| 934 |
+
# Word-level score
|
| 935 |
+
word_score = np.mean(phoneme_scores) if phoneme_scores else 0.0
|
| 936 |
+
|
| 937 |
+
# Detect issues
|
| 938 |
+
issues = []
|
| 939 |
+
if word_score < 0.3:
|
| 940 |
+
issues.append("very_poor_clarity")
|
| 941 |
+
if word_features.get("rms_mean", 0) < 0.005:
|
| 942 |
+
issues.append("too_quiet")
|
| 943 |
+
if word_features.get("zcr_mean", 0) > 0.3:
|
| 944 |
+
issues.append("too_noisy")
|
| 945 |
+
|
| 946 |
+
return {
|
| 947 |
+
"word": word_info["word"],
|
| 948 |
+
"score": word_score,
|
| 949 |
+
"status": self._get_word_status(word_score),
|
| 950 |
+
"phonemes": phonemes,
|
| 951 |
+
"phoneme_scores": phoneme_scores,
|
| 952 |
+
"phoneme_details": phoneme_details,
|
| 953 |
+
"ipa": word_info["ipa"],
|
| 954 |
+
"syllables": word_info["syllables"],
|
| 955 |
+
"difficulty": word_info["difficulty"],
|
| 956 |
+
"issues": issues,
|
| 957 |
+
}
|
| 958 |
+
|
| 959 |
+
def _extract_word_features(self, word_audio: np.ndarray) -> Dict:
|
| 960 |
+
"""Extract features for word segment"""
|
| 961 |
+
if len(word_audio) < 100:
|
| 962 |
+
return {}
|
| 963 |
+
|
| 964 |
+
mfcc = librosa.feature.mfcc(y=word_audio, sr=self.sample_rate, n_mfcc=13)
|
| 965 |
+
rms = librosa.feature.rms(y=word_audio)[0]
|
| 966 |
+
centroid = librosa.feature.spectral_centroid(y=word_audio, sr=self.sample_rate)[
|
| 967 |
+
0
|
| 968 |
+
]
|
| 969 |
+
zcr = librosa.feature.zero_crossing_rate(word_audio)[0]
|
| 970 |
+
|
| 971 |
+
return {
|
| 972 |
+
"mfcc_mean": np.mean(mfcc, axis=1).tolist(),
|
| 973 |
+
"rms_mean": float(np.mean(rms)),
|
| 974 |
+
"spectral_centroid_mean": float(np.mean(centroid)),
|
| 975 |
+
"zcr_mean": float(np.mean(zcr)),
|
| 976 |
+
}
|
| 977 |
+
|
| 978 |
+
def _segment_phonemes(
|
| 979 |
+
self, word_audio: np.ndarray, num_phonemes: int
|
| 980 |
+
) -> List[np.ndarray]:
|
| 981 |
+
"""Segment word audio into phonemes"""
|
| 982 |
+
if num_phonemes <= 1:
|
| 983 |
+
return [word_audio]
|
| 984 |
+
|
| 985 |
+
segment_length = len(word_audio) // num_phonemes
|
| 986 |
+
segments = []
|
| 987 |
+
|
| 988 |
+
for i in range(num_phonemes):
|
| 989 |
+
start = i * segment_length
|
| 990 |
+
end = start + segment_length if i < num_phonemes - 1 else len(word_audio)
|
| 991 |
+
segments.append(word_audio[start:end])
|
| 992 |
|
| 993 |
+
return segments
|
| 994 |
|
| 995 |
+
def _extract_segment_features(self, segment: np.ndarray) -> Dict:
|
| 996 |
+
"""Extract features for phoneme segment"""
|
| 997 |
+
if len(segment) < 50:
|
| 998 |
+
return {}
|
| 999 |
|
| 1000 |
+
# Basic features for short segments
|
| 1001 |
+
rms_mean = float(np.mean(librosa.feature.rms(y=segment)[0]))
|
| 1002 |
+
zcr_mean = float(np.mean(librosa.feature.zero_crossing_rate(segment)[0]))
|
| 1003 |
|
| 1004 |
+
# Spectral centroid
|
| 1005 |
+
centroid = librosa.feature.spectral_centroid(y=segment, sr=self.sample_rate)[0]
|
| 1006 |
+
centroid_mean = float(np.mean(centroid))
|
| 1007 |
|
| 1008 |
+
# MFCC for short segment
|
| 1009 |
+
if len(segment) > 512:
|
| 1010 |
+
mfcc = librosa.feature.mfcc(y=segment, sr=self.sample_rate, n_mfcc=5)
|
| 1011 |
+
mfcc_mean = np.mean(mfcc, axis=1).tolist()
|
| 1012 |
+
else:
|
| 1013 |
+
mfcc_mean = [0] * 5
|
| 1014 |
+
|
| 1015 |
+
return {
|
| 1016 |
+
"rms_mean": rms_mean,
|
| 1017 |
+
"zcr_mean": zcr_mean,
|
| 1018 |
+
"spectral_centroid_mean": centroid_mean,
|
| 1019 |
+
"mfcc_mean": mfcc_mean,
|
| 1020 |
+
}
|
| 1021 |
+
|
| 1022 |
+
def _generate_comprehensive_feedback(
|
| 1023 |
self,
|
| 1024 |
+
word_results: List[Dict],
|
| 1025 |
+
text_analysis: Dict,
|
| 1026 |
+
features: Dict,
|
| 1027 |
overall_score: float,
|
|
|
|
|
|
|
| 1028 |
) -> List[str]:
|
| 1029 |
+
"""Generate comprehensive feedback"""
|
|
|
|
| 1030 |
feedback = []
|
| 1031 |
|
| 1032 |
+
# Overall performance feedback
|
| 1033 |
+
if overall_score >= 0.85:
|
| 1034 |
+
feedback.append(
|
| 1035 |
+
"🎉 Outstanding pronunciation! You sound very natural and clear."
|
| 1036 |
+
)
|
| 1037 |
+
elif overall_score >= 0.7:
|
| 1038 |
+
feedback.append(
|
| 1039 |
+
"👍 Great job! Your pronunciation is quite good with room for minor improvements."
|
| 1040 |
+
)
|
| 1041 |
+
elif overall_score >= 0.5:
|
| 1042 |
+
feedback.append(
|
| 1043 |
+
"📚 Good progress! Keep practicing the areas highlighted below."
|
| 1044 |
+
)
|
| 1045 |
+
elif overall_score >= 0.3:
|
| 1046 |
feedback.append(
|
| 1047 |
+
"🔄 Keep working on it! Focus on clarity and the specific sounds mentioned."
|
| 1048 |
)
|
| 1049 |
else:
|
| 1050 |
+
feedback.append(
|
| 1051 |
+
"💪 Don't give up! Start with slower, clearer pronunciation."
|
| 1052 |
+
)
|
| 1053 |
+
|
| 1054 |
+
# Audio quality feedback
|
| 1055 |
+
audio_quality = features.get("rms_mean", 0)
|
| 1056 |
+
if audio_quality < 0.01:
|
| 1057 |
+
feedback.append(
|
| 1058 |
+
"🔊 Try speaking louder and more clearly - your recording was quite quiet."
|
| 1059 |
+
)
|
| 1060 |
+
elif audio_quality > 0.15:
|
| 1061 |
+
feedback.append("🔉 Good volume level! Your voice comes through clearly.")
|
| 1062 |
+
|
| 1063 |
+
# Pitch variation feedback
|
| 1064 |
+
pitch_std = features.get("f0_std", 0)
|
| 1065 |
+
if pitch_std < 20:
|
| 1066 |
+
feedback.append(
|
| 1067 |
+
"🎵 Try adding more natural pitch variation to sound more engaging."
|
| 1068 |
+
)
|
| 1069 |
+
elif pitch_std > 80:
|
| 1070 |
+
feedback.append(
|
| 1071 |
+
"🎵 Good pitch variation! Your speech sounds natural and expressive."
|
| 1072 |
+
)
|
| 1073 |
|
| 1074 |
+
# Word-specific feedback
|
| 1075 |
+
poor_words = [wr for wr in word_results if wr["score"] < 0.5]
|
| 1076 |
+
if poor_words:
|
| 1077 |
+
word_names = [w["word"] for w in poor_words]
|
| 1078 |
+
feedback.append(f"🎯 Focus extra practice on: {', '.join(word_names)}")
|
| 1079 |
|
| 1080 |
# Phoneme-specific feedback for Vietnamese speakers
|
| 1081 |
+
all_challenging = []
|
| 1082 |
+
for word_result in word_results:
|
| 1083 |
+
for phoneme_detail in word_result.get("phoneme_details", []):
|
| 1084 |
+
if phoneme_detail["score"] < 0.5 and phoneme_detail["difficulty"] > 0.6:
|
| 1085 |
+
all_challenging.append(phoneme_detail["phoneme"])
|
| 1086 |
+
|
| 1087 |
+
if all_challenging:
|
| 1088 |
+
unique_challenging = list(set(all_challenging))
|
| 1089 |
+
vietnamese_tips = {
|
| 1090 |
+
"TH": "Put your tongue between your teeth and blow air gently",
|
| 1091 |
+
"DH": "Same tongue position as TH, but vibrate your vocal cords",
|
| 1092 |
+
"V": "Touch your bottom lip to your top teeth, then voice",
|
| 1093 |
+
"R": "Curl your tongue without touching the roof of your mouth",
|
| 1094 |
+
"L": "Touch your tongue tip to the roof of your mouth",
|
| 1095 |
+
"Z": "Like 'S' but with vocal cord vibration",
|
| 1096 |
+
}
|
| 1097 |
|
| 1098 |
+
for phoneme in unique_challenging[:3]: # Top 3 challenging
|
| 1099 |
+
clean_phoneme = re.sub(r"[0-9]", "", phoneme)
|
| 1100 |
+
if clean_phoneme in vietnamese_tips:
|
| 1101 |
+
feedback.append(
|
| 1102 |
+
f"🔤 {clean_phoneme} sound: {vietnamese_tips[clean_phoneme]}"
|
| 1103 |
+
)
|
| 1104 |
+
|
| 1105 |
+
# Difficulty-based encouragement
|
| 1106 |
+
text_difficulty = text_analysis["difficulty_score"]
|
| 1107 |
+
if text_difficulty > 0.7 and overall_score > 0.6:
|
| 1108 |
+
feedback.append(
|
| 1109 |
+
"💪 Impressive! You tackled some very challenging sounds for Vietnamese speakers."
|
| 1110 |
)
|
| 1111 |
+
elif text_difficulty < 0.3 and overall_score < 0.7:
|
| 1112 |
+
feedback.append("📈 Try some more challenging words as you improve!")
|
|
|
|
| 1113 |
|
| 1114 |
return feedback
|
| 1115 |
|
| 1116 |
+
def _analyze_difficulty_performance(
|
| 1117 |
+
self, word_results: List[Dict], text_analysis: Dict
|
| 1118 |
+
) -> Dict:
|
| 1119 |
+
"""Analyze performance vs difficulty"""
|
| 1120 |
+
easy_phonemes = [] # difficulty < 0.4
|
| 1121 |
+
medium_phonemes = [] # 0.4 <= difficulty < 0.7
|
| 1122 |
+
hard_phonemes = [] # difficulty >= 0.7
|
| 1123 |
+
|
| 1124 |
+
for word_result in word_results:
|
| 1125 |
+
for phoneme_detail in word_result.get("phoneme_details", []):
|
| 1126 |
+
difficulty = phoneme_detail["difficulty"]
|
| 1127 |
+
score = phoneme_detail["score"]
|
| 1128 |
+
|
| 1129 |
+
if difficulty < 0.4:
|
| 1130 |
+
easy_phonemes.append(score)
|
| 1131 |
+
elif difficulty < 0.7:
|
| 1132 |
+
medium_phonemes.append(score)
|
| 1133 |
+
else:
|
| 1134 |
+
hard_phonemes.append(score)
|
| 1135 |
+
|
| 1136 |
+
return {
|
| 1137 |
+
"easy_sounds_avg": float(np.mean(easy_phonemes)) if easy_phonemes else 0.0,
|
| 1138 |
+
"medium_sounds_avg": (
|
| 1139 |
+
float(np.mean(medium_phonemes)) if medium_phonemes else 0.0
|
| 1140 |
+
),
|
| 1141 |
+
"hard_sounds_avg": float(np.mean(hard_phonemes)) if hard_phonemes else 0.0,
|
| 1142 |
+
"total_challenging_sounds": len(hard_phonemes),
|
| 1143 |
+
"mastered_difficult_sounds": len([s for s in hard_phonemes if s > 0.7]),
|
| 1144 |
+
"text_difficulty": text_analysis["difficulty_score"],
|
| 1145 |
+
}
|
| 1146 |
+
|
| 1147 |
def _get_word_status(self, score: float) -> str:
|
| 1148 |
"""Get word status from score"""
|
| 1149 |
if score >= 0.8:
|
|
|
|
| 1155 |
else:
|
| 1156 |
return "poor"
|
| 1157 |
|
| 1158 |
+
def _get_status(self, score: float) -> str:
|
| 1159 |
+
"""Get overall status"""
|
| 1160 |
+
return self._get_word_status(score)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1161 |
|
| 1162 |
|
| 1163 |
# =============================================================================
|
| 1164 |
+
# ENHANCED FASTAPI APP
|
| 1165 |
# =============================================================================
|
| 1166 |
|
|
|
|
|
|
|
| 1167 |
|
| 1168 |
+
# Initialize enhanced processor
|
| 1169 |
+
assessor = EnhancedPronunciationAssessor()
|
| 1170 |
|
| 1171 |
+
# =============================================================================
|
| 1172 |
+
# ENHANCED ENDPOINTS
|
| 1173 |
+
# =============================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1174 |
|
| 1175 |
|
| 1176 |
+
@router.post("/assess", response_model=PronunciationResult)
|
| 1177 |
async def assess_pronunciation(
|
| 1178 |
+
audio: UploadFile = File(..., description="Audio file"),
|
| 1179 |
+
reference_text: str = Form(..., description="Any English text"),
|
| 1180 |
+
difficulty_level: str = Form("medium", description="easy, medium, hard"),
|
| 1181 |
):
|
| 1182 |
"""
|
| 1183 |
+
Assess pronunciation for ANY English text
|
| 1184 |
+
Supports 60,000+ words from CMU Pronouncing Dictionary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1185 |
"""
|
| 1186 |
|
| 1187 |
import time
|
| 1188 |
|
| 1189 |
start_time = time.time()
|
| 1190 |
+
print(f"Starting pronunciation assessment...")
|
| 1191 |
+
print("Reference text:", reference_text)
|
| 1192 |
+
print("Difficulty level:", difficulty_level)
|
| 1193 |
+
print("Audio filename:", audio.filename if audio else "None")
|
| 1194 |
+
|
| 1195 |
# Validate inputs
|
| 1196 |
if not reference_text.strip():
|
| 1197 |
+
print("Validation failed: Reference text is empty")
|
| 1198 |
raise HTTPException(status_code=400, detail="Reference text cannot be empty")
|
| 1199 |
|
| 1200 |
+
if len(reference_text) > 1000:
|
| 1201 |
+
print("Validation failed: Reference text too long")
|
| 1202 |
raise HTTPException(
|
| 1203 |
+
status_code=400, detail="Reference text too long (max 1000 characters)"
|
| 1204 |
)
|
| 1205 |
|
| 1206 |
+
# Check if text contains only valid characters
|
| 1207 |
+
# Updated regex to be more permissive and include common punctuation like commas
|
| 1208 |
if not re.match(r"^[a-zA-Z\s\'\-\.!?,;:]+$", reference_text):
|
| 1209 |
+
print("Validation failed: Invalid characters in text")
|
| 1210 |
+
print("Text that failed validation:", repr(reference_text))
|
| 1211 |
raise HTTPException(
|
| 1212 |
status_code=400,
|
| 1213 |
+
detail="Text contains invalid characters. Only English letters, spaces, and basic punctuation (,.'-!?;:) allowed.",
|
| 1214 |
)
|
| 1215 |
|
| 1216 |
try:
|
| 1217 |
+
# Save uploaded file
|
| 1218 |
+
print("Saving uploaded file...")
|
| 1219 |
+
# Handle cases where filename might be None or empty
|
| 1220 |
file_extension = ".wav"
|
| 1221 |
+
if audio.filename:
|
| 1222 |
+
file_extension = f".{audio.filename.split('.')[-1]}" if '.' in audio.filename else ".wav"
|
| 1223 |
+
|
| 1224 |
with tempfile.NamedTemporaryFile(
|
| 1225 |
delete=False, suffix=file_extension
|
| 1226 |
) as tmp_file:
|
| 1227 |
content = await audio.read()
|
| 1228 |
tmp_file.write(content)
|
| 1229 |
tmp_file.flush()
|
| 1230 |
+
print("File saved to:", tmp_file.name)
|
| 1231 |
+
print("File size:", len(content), "bytes")
|
| 1232 |
|
| 1233 |
+
# Process with enhanced assessor
|
| 1234 |
+
print("Processing audio file...")
|
| 1235 |
+
result = assessor.process_audio_file(tmp_file.name, reference_text)
|
| 1236 |
+
print("Audio processing completed")
|
| 1237 |
|
| 1238 |
+
# Clean up
|
|
|
|
|
|
|
|
|
|
| 1239 |
os.unlink(tmp_file.name)
|
| 1240 |
|
| 1241 |
+
# Apply difficulty adjustments
|
| 1242 |
+
analysis = result["pronunciation_analysis"]
|
| 1243 |
+
if difficulty_level == "easy":
|
| 1244 |
+
analysis["overall_score"] = min(1.0, analysis["overall_score"] * 1.2)
|
| 1245 |
+
for word in analysis["words"]:
|
| 1246 |
+
word["score"] = min(1.0, word["score"] * 1.2)
|
| 1247 |
+
elif difficulty_level == "hard":
|
| 1248 |
+
analysis["overall_score"] = analysis["overall_score"] * 0.8
|
| 1249 |
+
for word in analysis["words"]:
|
| 1250 |
+
word["score"] = word["score"] * 0.8
|
| 1251 |
|
| 1252 |
processing_time = time.time() - start_time
|
| 1253 |
+
print("Processing completed successfully in", processing_time, "seconds")
|
| 1254 |
+
|
| 1255 |
+
return PronunciationResult(
|
| 1256 |
+
overall_score=analysis["overall_score"],
|
| 1257 |
+
status=analysis["status"],
|
| 1258 |
+
feedback=analysis["feedback"],
|
| 1259 |
+
words=analysis["words"],
|
| 1260 |
+
phoneme_details=analysis["phoneme_details"],
|
| 1261 |
+
audio_info=result["audio_info"],
|
| 1262 |
+
processing_time=processing_time,
|
| 1263 |
+
difficulty_analysis=analysis["difficulty_analysis"],
|
| 1264 |
+
)
|
| 1265 |
|
| 1266 |
except Exception as e:
|
| 1267 |
+
print("Exception occurred during processing:", str(e))
|
| 1268 |
import traceback
|
|
|
|
| 1269 |
traceback.print_exc()
|
| 1270 |
+
raise HTTPException(status_code=500, detail=f"Processing error: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1271 |
|
| 1272 |
|
| 1273 |
@router.get("/phonemes/{word}")
|
| 1274 |
async def get_word_phonemes(word: str):
|
| 1275 |
+
"""Get comprehensive phoneme information for ANY English word"""
|
| 1276 |
try:
|
| 1277 |
+
word_info = assessor.phoneme_processor.get_word_phonemes(word)
|
| 1278 |
|
| 1279 |
+
# Calculate difficulty for Vietnamese speakers
|
| 1280 |
+
difficulty = assessor.phoneme_processor.get_difficulty_score(word_info.phonemes)
|
|
|
|
|
|
|
|
|
|
| 1281 |
|
| 1282 |
+
# Get challenging phonemes
|
| 1283 |
+
challenging_phonemes = []
|
| 1284 |
+
for phoneme in word_info.phonemes:
|
| 1285 |
+
clean_phoneme = re.sub(r"[0-9]", "", phoneme)
|
| 1286 |
+
phoneme_difficulty = assessor.phoneme_processor.difficulty_map.get(
|
| 1287 |
+
clean_phoneme, 0
|
| 1288 |
+
)
|
| 1289 |
+
if phoneme_difficulty > 0.6:
|
| 1290 |
+
challenging_phonemes.append(
|
| 1291 |
+
{
|
| 1292 |
+
"phoneme": clean_phoneme,
|
| 1293 |
+
"difficulty": phoneme_difficulty,
|
| 1294 |
+
"tips": get_phoneme_tips(clean_phoneme),
|
| 1295 |
+
}
|
| 1296 |
+
)
|
| 1297 |
|
| 1298 |
return {
|
| 1299 |
"word": word,
|
| 1300 |
+
"phonemes": word_info.phonemes,
|
| 1301 |
+
"ipa_transcription": word_info.ipa_transcription,
|
| 1302 |
+
"syllables": word_info.syllables,
|
| 1303 |
+
"stress_pattern": word_info.stress_pattern,
|
| 1304 |
+
"difficulty_score": difficulty,
|
| 1305 |
+
"difficulty_level": (
|
| 1306 |
+
"hard" if difficulty > 0.7 else "medium" if difficulty > 0.4 else "easy"
|
| 1307 |
+
),
|
| 1308 |
+
"challenging_phonemes": challenging_phonemes,
|
| 1309 |
+
"pronunciation_tips": get_word_pronunciation_tips(word, word_info.phonemes),
|
| 1310 |
+
}
|
| 1311 |
+
|
| 1312 |
+
except Exception as e:
|
| 1313 |
+
raise HTTPException(status_code=500, detail=f"Error processing word: {str(e)}")
|
| 1314 |
+
|
| 1315 |
+
|
| 1316 |
+
@router.post("/analyze/text")
|
| 1317 |
+
async def analyze_text_difficulty(text: str = Form(...)):
|
| 1318 |
+
"""Analyze pronunciation difficulty of any English text"""
|
| 1319 |
+
try:
|
| 1320 |
+
text_analysis = assessor._analyze_text(text)
|
| 1321 |
+
|
| 1322 |
+
return {
|
| 1323 |
+
"text": text,
|
| 1324 |
+
"word_count": len(text_analysis["words"]),
|
| 1325 |
+
"total_phonemes": text_analysis["total_phonemes"],
|
| 1326 |
+
"overall_difficulty": text_analysis["difficulty_score"],
|
| 1327 |
"difficulty_level": (
|
| 1328 |
"hard"
|
| 1329 |
+
if text_analysis["difficulty_score"] > 0.7
|
| 1330 |
+
else "medium" if text_analysis["difficulty_score"] > 0.4 else "easy"
|
| 1331 |
),
|
| 1332 |
+
"challenging_sounds": text_analysis["challenging_sounds"],
|
| 1333 |
+
"word_breakdown": text_analysis["words"],
|
| 1334 |
+
"recommendations": get_text_recommendations(text_analysis),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1335 |
}
|
| 1336 |
|
| 1337 |
except Exception as e:
|
| 1338 |
+
raise HTTPException(status_code=500, detail=f"Text analysis error: {str(e)}")
|
| 1339 |
+
|
| 1340 |
+
|
| 1341 |
+
@router.get("/dictionary/search")
|
| 1342 |
+
async def search_dictionary(query: str, limit: int = 20):
|
| 1343 |
+
"""Search CMU dictionary for words containing query"""
|
| 1344 |
+
try:
|
| 1345 |
+
cmu_dict = assessor.phoneme_processor.cmu_dict
|
| 1346 |
+
|
| 1347 |
+
# Search for words containing the query
|
| 1348 |
+
matching_words = []
|
| 1349 |
+
query_lower = query.lower()
|
| 1350 |
+
|
| 1351 |
+
for word in cmu_dict.keys():
|
| 1352 |
+
if query_lower in word and len(matching_words) < limit:
|
| 1353 |
+
word_info = assessor.phoneme_processor.get_word_phonemes(word)
|
| 1354 |
+
difficulty = assessor.phoneme_processor.get_difficulty_score(
|
| 1355 |
+
word_info.phonemes
|
| 1356 |
+
)
|
| 1357 |
+
|
| 1358 |
+
matching_words.append(
|
| 1359 |
+
{
|
| 1360 |
+
"word": word,
|
| 1361 |
+
"phonemes": word_info.phonemes,
|
| 1362 |
+
"ipa": word_info.ipa_transcription,
|
| 1363 |
+
"difficulty": difficulty,
|
| 1364 |
+
"difficulty_level": (
|
| 1365 |
+
"hard"
|
| 1366 |
+
if difficulty > 0.7
|
| 1367 |
+
else "medium" if difficulty > 0.4 else "easy"
|
| 1368 |
+
),
|
| 1369 |
+
}
|
| 1370 |
+
)
|
| 1371 |
+
|
| 1372 |
+
# Sort by difficulty (easiest first)
|
| 1373 |
+
matching_words.sort(key=lambda x: x["difficulty"])
|
| 1374 |
|
| 1375 |
+
return {"query": query, "found": len(matching_words), "words": matching_words}
|
| 1376 |
+
|
| 1377 |
+
except Exception as e:
|
| 1378 |
+
raise HTTPException(
|
| 1379 |
+
status_code=500, detail=f"Dictionary search error: {str(e)}"
|
| 1380 |
+
)
|
| 1381 |
+
|
| 1382 |
+
|
| 1383 |
+
@router.get("/practice/level/{level}")
|
| 1384 |
+
async def get_practice_words(level: str, count: int = 10):
|
| 1385 |
+
"""Get practice words by difficulty level"""
|
| 1386 |
+
|
| 1387 |
+
if level not in ["easy", "medium", "hard"]:
|
| 1388 |
+
raise HTTPException(
|
| 1389 |
+
status_code=400, detail="Level must be easy, medium, or hard"
|
| 1390 |
+
)
|
| 1391 |
+
|
| 1392 |
+
try:
|
| 1393 |
+
cmu_dict = assessor.phoneme_processor.cmu_dict
|
| 1394 |
+
practice_words = []
|
| 1395 |
+
|
| 1396 |
+
# Define difficulty ranges
|
| 1397 |
+
if level == "easy":
|
| 1398 |
+
difficulty_range = (0, 0.4)
|
| 1399 |
+
elif level == "medium":
|
| 1400 |
+
difficulty_range = (0.4, 0.7)
|
| 1401 |
+
else: # hard
|
| 1402 |
+
difficulty_range = (0.7, 1.0)
|
| 1403 |
+
|
| 1404 |
+
# Sample words from dictionary
|
| 1405 |
+
word_list = list(cmu_dict.keys())
|
| 1406 |
+
np.random.shuffle(word_list)
|
| 1407 |
+
|
| 1408 |
+
for word in word_list:
|
| 1409 |
+
if len(practice_words) >= count:
|
| 1410 |
+
break
|
| 1411 |
+
|
| 1412 |
+
# Skip very short or very long words
|
| 1413 |
+
if len(word) < 3 or len(word) > 12:
|
| 1414 |
+
continue
|
| 1415 |
+
|
| 1416 |
+
# Skip words with special characters
|
| 1417 |
+
if not word.isalpha():
|
| 1418 |
+
continue
|
| 1419 |
+
|
| 1420 |
+
word_info = assessor.phoneme_processor.get_word_phonemes(word)
|
| 1421 |
+
difficulty = assessor.phoneme_processor.get_difficulty_score(
|
| 1422 |
+
word_info.phonemes
|
| 1423 |
+
)
|
| 1424 |
+
|
| 1425 |
+
if difficulty_range[0] <= difficulty <= difficulty_range[1]:
|
| 1426 |
+
practice_words.append(
|
| 1427 |
+
{
|
| 1428 |
+
"word": word,
|
| 1429 |
+
"phonemes": word_info.phonemes,
|
| 1430 |
+
"ipa": word_info.ipa_transcription,
|
| 1431 |
+
"difficulty": difficulty,
|
| 1432 |
+
"tips": get_word_pronunciation_tips(word, word_info.phonemes),
|
| 1433 |
+
}
|
| 1434 |
+
)
|
| 1435 |
+
|
| 1436 |
+
return {
|
| 1437 |
+
"level": level,
|
| 1438 |
+
"difficulty_range": difficulty_range,
|
| 1439 |
+
"count": len(practice_words),
|
| 1440 |
+
"words": practice_words,
|
| 1441 |
+
}
|
| 1442 |
+
|
| 1443 |
+
except Exception as e:
|
| 1444 |
+
raise HTTPException(status_code=500, detail=f"Practice words error: {str(e)}")
|
| 1445 |
+
|
| 1446 |
+
|
| 1447 |
+
# =============================================================================
|
| 1448 |
+
# HELPER FUNCTIONS
|
| 1449 |
+
# =============================================================================
|
| 1450 |
+
|
| 1451 |
+
|
| 1452 |
+
def get_phoneme_tips(phoneme: str) -> List[str]:
|
| 1453 |
+
"""Get pronunciation tips for specific phonemes"""
|
| 1454 |
+
tips_dict = {
|
| 1455 |
+
"TH": [
|
| 1456 |
+
"Place tongue tip between upper and lower teeth",
|
| 1457 |
+
"Blow air gently while keeping tongue in position",
|
| 1458 |
+
"Should feel air flowing over tongue",
|
| 1459 |
+
],
|
| 1460 |
+
"DH": [
|
| 1461 |
+
"Same tongue position as TH",
|
| 1462 |
+
"Add vocal cord vibration",
|
| 1463 |
+
"Should feel buzzing in throat",
|
| 1464 |
+
],
|
| 1465 |
+
"V": [
|
| 1466 |
+
"Touch bottom lip to upper teeth",
|
| 1467 |
+
"Voice while air flows through the gap",
|
| 1468 |
+
"Don't use both lips like Vietnamese 'V'",
|
| 1469 |
+
],
|
| 1470 |
+
"R": [
|
| 1471 |
+
"Curl tongue without touching roof of mouth",
|
| 1472 |
+
"Don't roll the R like in Vietnamese",
|
| 1473 |
+
"Tongue should float freely",
|
| 1474 |
+
],
|
| 1475 |
+
"L": [
|
| 1476 |
+
"Touch tongue tip to roof of mouth behind teeth",
|
| 1477 |
+
"Let air flow around sides of tongue",
|
| 1478 |
+
"Make sure tongue actually touches",
|
| 1479 |
+
],
|
| 1480 |
+
"Z": [
|
| 1481 |
+
"Same tongue position as 'S'",
|
| 1482 |
+
"Add vocal cord vibration",
|
| 1483 |
+
"Should buzz like a bee",
|
| 1484 |
+
],
|
| 1485 |
+
}
|
| 1486 |
+
|
| 1487 |
+
return tips_dict.get(phoneme, ["Practice this sound slowly and clearly"])
|
| 1488 |
+
|
| 1489 |
+
|
| 1490 |
+
def get_word_pronunciation_tips(word: str, phonemes: List[str]) -> List[str]:
|
| 1491 |
+
"""Get word-specific pronunciation tips"""
|
| 1492 |
+
tips = []
|
| 1493 |
+
|
| 1494 |
+
# Check for challenging combinations
|
| 1495 |
+
phoneme_str = " ".join(phonemes)
|
| 1496 |
+
|
| 1497 |
+
# Consonant clusters
|
| 1498 |
+
if "S T" in phoneme_str or "S K" in phoneme_str or "S P" in phoneme_str:
|
| 1499 |
+
tips.append("Practice the consonant cluster slowly, then speed up")
|
| 1500 |
+
|
| 1501 |
+
# TH sounds
|
| 1502 |
+
if "TH" in phonemes:
|
| 1503 |
+
tips.append("Remember: tongue between teeth for TH sounds")
|
| 1504 |
+
|
| 1505 |
+
# R and L distinction
|
| 1506 |
+
if "R" in phonemes and "L" in phonemes:
|
| 1507 |
+
tips.append("Focus on R (no touching) vs L (tongue touches roof)")
|
| 1508 |
+
|
| 1509 |
+
# Final consonants (Vietnamese tendency to drop)
|
| 1510 |
+
final_phoneme = phonemes[-1] if phonemes else ""
|
| 1511 |
+
if final_phoneme in ["T", "D", "K", "G", "P", "B"]:
|
| 1512 |
+
tips.append("Don't forget the final consonant sound")
|
| 1513 |
+
|
| 1514 |
+
# Vowel length
|
| 1515 |
+
vowel_phonemes = [
|
| 1516 |
+
p for p in phonemes if re.sub(r"[0-9]", "", p) in ["IY", "UW", "AO"]
|
| 1517 |
+
]
|
| 1518 |
+
if vowel_phonemes:
|
| 1519 |
+
tips.append("Make sure long vowels are actually longer")
|
| 1520 |
+
|
| 1521 |
+
if not tips:
|
| 1522 |
+
tips.append("Break the word into syllables and practice each part")
|
| 1523 |
+
|
| 1524 |
+
return tips
|
| 1525 |
+
|
| 1526 |
+
|
| 1527 |
+
def get_text_recommendations(text_analysis: Dict) -> List[str]:
|
| 1528 |
+
"""Get recommendations based on text analysis"""
|
| 1529 |
+
recommendations = []
|
| 1530 |
+
|
| 1531 |
+
difficulty = text_analysis["difficulty_score"]
|
| 1532 |
+
|
| 1533 |
+
if difficulty < 0.3:
|
| 1534 |
+
recommendations.append(
|
| 1535 |
+
"This text is good for beginners. Try adding more challenging words gradually."
|
| 1536 |
+
)
|
| 1537 |
+
elif difficulty > 0.8:
|
| 1538 |
+
recommendations.append(
|
| 1539 |
+
"This is very challenging text. Consider starting with easier words first."
|
| 1540 |
+
)
|
| 1541 |
+
|
| 1542 |
+
challenging_sounds = text_analysis["challenging_sounds"]
|
| 1543 |
+
if len(challenging_sounds) > 5:
|
| 1544 |
+
recommendations.append(
|
| 1545 |
+
"This text has many challenging sounds. Practice individual words first."
|
| 1546 |
+
)
|
| 1547 |
+
|
| 1548 |
+
# Word length recommendations
|
| 1549 |
+
long_words = [w for w in text_analysis["words"] if len(w["phonemes"]) > 8]
|
| 1550 |
+
if long_words:
|
| 1551 |
+
recommendations.append(
|
| 1552 |
+
"Break down longer words into syllables for easier practice."
|
| 1553 |
+
)
|
| 1554 |
+
|
| 1555 |
+
return recommendations
|
| 1556 |
+
|
| 1557 |
+
|
| 1558 |
+
# =============================================================================
|
| 1559 |
+
# ADDITIONAL ENDPOINTS
|
| 1560 |
+
# =============================================================================
|
| 1561 |
+
|
| 1562 |
+
|
| 1563 |
+
@router.get("/stats")
|
| 1564 |
+
async def get_system_stats():
|
| 1565 |
+
"""Get system statistics"""
|
| 1566 |
+
cmu_dict = assessor.phoneme_processor.cmu_dict
|
| 1567 |
+
|
| 1568 |
+
return {
|
| 1569 |
+
"total_words_supported": len(cmu_dict),
|
| 1570 |
+
"phonemes_supported": len(assessor.phoneme_processor.phoneme_models),
|
| 1571 |
+
"difficulty_levels": ["easy", "medium", "hard"],
|
| 1572 |
+
"audio_formats_supported": ["wav", "mp3", "m4a", "flac"],
|
| 1573 |
+
"max_audio_duration": "30 seconds",
|
| 1574 |
+
"vietnamese_specific_features": True,
|
| 1575 |
+
"features": [
|
| 1576 |
+
"CMU Pronouncing Dictionary integration",
|
| 1577 |
+
"IPA transcription",
|
| 1578 |
+
"Syllable analysis",
|
| 1579 |
+
"Contextual phoneme scoring",
|
| 1580 |
+
"Vietnamese learner optimization",
|
| 1581 |
+
],
|
| 1582 |
+
}
|
| 1583 |
+
|
| 1584 |
+
|
| 1585 |
+
@router.get("/phonemes/difficult")
|
| 1586 |
+
async def get_difficult_phonemes_for_vietnamese():
|
| 1587 |
+
"""Get phonemes that are most difficult for Vietnamese speakers"""
|
| 1588 |
+
difficult_phonemes = []
|
| 1589 |
+
|
| 1590 |
+
for phoneme, difficulty in assessor.phoneme_processor.difficulty_map.items():
|
| 1591 |
+
if difficulty > 0.6: # Only include challenging ones
|
| 1592 |
+
difficult_phonemes.append(
|
| 1593 |
+
{
|
| 1594 |
+
"phoneme": phoneme,
|
| 1595 |
+
"difficulty": difficulty,
|
| 1596 |
+
"tips": get_phoneme_tips(phoneme),
|
| 1597 |
+
"example_words": get_example_words(phoneme),
|
| 1598 |
+
}
|
| 1599 |
+
)
|
| 1600 |
+
|
| 1601 |
+
# Sort by difficulty (hardest first)
|
| 1602 |
+
difficult_phonemes.sort(key=lambda x: x["difficulty"], reverse=True)
|
| 1603 |
|
|
|
|
|
|
|
|
|
|
| 1604 |
return {
|
| 1605 |
+
"difficult_phonemes": difficult_phonemes,
|
| 1606 |
+
"total_count": len(difficult_phonemes),
|
| 1607 |
+
"recommendation": "Focus on the top 5 most difficult sounds first",
|
|
|
|
| 1608 |
}
|
| 1609 |
+
|
| 1610 |
+
|
| 1611 |
+
def get_example_words(phoneme: str) -> List[str]:
|
| 1612 |
+
"""Get example words containing the phoneme"""
|
| 1613 |
+
examples = {
|
| 1614 |
+
"TH": ["think", "three", "math", "path"],
|
| 1615 |
+
"DH": ["this", "that", "mother", "weather"],
|
| 1616 |
+
"V": ["very", "love", "give", "have"],
|
| 1617 |
+
"Z": ["zoo", "zero", "buzz", "rise"],
|
| 1618 |
+
"R": ["red", "car", "very", "right"],
|
| 1619 |
+
"L": ["love", "hello", "well", "people"],
|
| 1620 |
+
"W": ["water", "well", "what", "sweet"],
|
| 1621 |
+
"ZH": ["measure", "vision", "treasure"],
|
| 1622 |
+
"CH": ["chair", "much", "teach"],
|
| 1623 |
+
"JH": ["job", "bridge", "age"],
|
| 1624 |
+
"SH": ["shoe", "fish", "nation"],
|
| 1625 |
+
"NG": ["ring", "thing", "young"],
|
| 1626 |
+
}
|
| 1627 |
+
|
| 1628 |
+
return examples.get(phoneme, [f"word_with_{phoneme.lower()}"])
|