Spaces:
Runtime error
Runtime error
Update run.py
Browse files
run.py
CHANGED
|
@@ -1,18 +1,34 @@
|
|
| 1 |
-
|
| 2 |
-
# Title:
|
| 3 |
# Author: Andreas Fischer
|
| 4 |
-
# Date:
|
| 5 |
-
# Last update:
|
| 6 |
-
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Chroma-DB
|
| 10 |
#-----------
|
| 11 |
import os
|
| 12 |
import chromadb
|
| 13 |
dbPath="/home/af/Schreibtisch/gradio/Chroma/db"
|
| 14 |
-
if(os.path.exists(dbPath)==False):
|
| 15 |
-
|
| 16 |
print(dbPath)
|
| 17 |
#client = chromadb.Client()
|
| 18 |
path=dbPath
|
|
@@ -22,23 +38,38 @@ print(client.get_version())
|
|
| 22 |
print(client.list_collections())
|
| 23 |
from chromadb.utils import embedding_functions
|
| 24 |
default_ef = embedding_functions.DefaultEmbeddingFunction()
|
| 25 |
-
sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
|
| 26 |
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
|
|
|
|
|
|
|
| 27 |
print(str(client.list_collections()))
|
| 28 |
|
| 29 |
global collection
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
| 33 |
else:
|
| 34 |
-
print("
|
| 35 |
collection = client.create_collection(
|
| 36 |
-
|
| 37 |
-
embedding_function=
|
| 38 |
metadata={"hnsw:space": "cosine"})
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
"Text generating AI model mistralai/Mixtral-8x7B-Instruct-v0.1: Suitable for text generation, e.g., social media content, marketing copy, blog posts, short stories, etc.",
|
| 43 |
"Image generating AI model stabilityai/sdxl-turbo: Suitable for image generation, e.g., illustrations, graphics, AI art, etc.",
|
| 44 |
"Audio transcribing AI model openai/whisper-large-v3: Suitable for audio-transcription in different languages",
|
|
@@ -46,80 +77,328 @@ else:
|
|
| 46 |
"Code generating AI model deepseek-ai/deepseek-coder-6.7b-instruct: Suitable for programming in Python, JavaScript, PHP, Bash and many other programming languages.",
|
| 47 |
"Translation AI model Helsinki-NLP/opus-mt: Suitable for translating text, e.g., from English to German or vice versa",
|
| 48 |
"Search result-integrating AI model phind/phind-v9-model: Suitable for researching current topics and for obtaining precise and up-to-date answers to questions based on web search results"
|
| 49 |
-
]
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
print("Database ready!")
|
| 55 |
print(collection.count())
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
|
| 61 |
-
|
| 62 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
|
| 70 |
# Gradio-GUI
|
| 71 |
#------------
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
import gradio as gr
|
|
|
|
| 74 |
import json
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
def
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
#
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
n_results=2,
|
| 102 |
-
|
| 103 |
#where_document={"$contains":"search_string"}
|
| 104 |
)
|
| 105 |
-
dists=["<br><small>(relevance: "+str(round((1-d)*100)/100)+";" for d in
|
| 106 |
-
sources=["source: "+s["source"]+")</small>" for s in
|
| 107 |
-
|
| 108 |
-
combination = zip(
|
| 109 |
combination = [' '.join(triplets) for triplets in combination]
|
| 110 |
-
print(combination)
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#########################################################################################
|
| 2 |
+
# Title: German AI-Interface to the Hugging Face Hub with advanced RAG
|
| 3 |
# Author: Andreas Fischer
|
| 4 |
+
# Date: January 31st, 2023
|
| 5 |
+
# Last update: February 21st, 2024
|
| 6 |
+
##########################################################################################
|
| 7 |
|
| 8 |
+
#https://github.com/abetlen/llama-cpp-python/issues/306
|
| 9 |
+
#sudo apt install libclblast-dev
|
| 10 |
+
#CMAKE_ARGS="-DLLAMA_CLBLAST=on" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir -v
|
| 11 |
+
|
| 12 |
+
# Prepare resources
|
| 13 |
+
#-------------------
|
| 14 |
+
import torch
|
| 15 |
+
import gc
|
| 16 |
+
torch.cuda.empty_cache()
|
| 17 |
+
gc.collect()
|
| 18 |
+
|
| 19 |
+
import os
|
| 20 |
+
from datetime import datetime
|
| 21 |
+
global filename
|
| 22 |
+
filename=f"./{datetime.now().strftime('%Y%m%d')}_history.json" # where to store the history as json-file
|
| 23 |
+
if(os.path.exists(filename)==True): os.remove(filename)
|
| 24 |
|
| 25 |
# Chroma-DB
|
| 26 |
#-----------
|
| 27 |
import os
|
| 28 |
import chromadb
|
| 29 |
dbPath="/home/af/Schreibtisch/gradio/Chroma/db"
|
| 30 |
+
if(os.path.exists(dbPath)==False): dbPath="/home/user/app/db"
|
| 31 |
+
|
| 32 |
print(dbPath)
|
| 33 |
#client = chromadb.Client()
|
| 34 |
path=dbPath
|
|
|
|
| 38 |
print(client.list_collections())
|
| 39 |
from chromadb.utils import embedding_functions
|
| 40 |
default_ef = embedding_functions.DefaultEmbeddingFunction()
|
| 41 |
+
#sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
|
| 42 |
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
|
| 43 |
+
embeddingModel = embedding_functions.InstructorEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer", device="cuda")
|
| 44 |
+
|
| 45 |
print(str(client.list_collections()))
|
| 46 |
|
| 47 |
global collection
|
| 48 |
+
dbName="myDB"
|
| 49 |
+
if("name="+dbName in str(client.list_collections())): client.delete_collection(name=dbName)
|
| 50 |
+
|
| 51 |
+
if("name="+dbName in str(client.list_collections())):
|
| 52 |
+
print(dbName+" found!")
|
| 53 |
+
collection = client.get_collection(name=dbName, embedding_function=embeddingModel )
|
| 54 |
else:
|
| 55 |
+
print(dbName+" created!")
|
| 56 |
collection = client.create_collection(
|
| 57 |
+
dbName,
|
| 58 |
+
embedding_function=embeddingModel,
|
| 59 |
metadata={"hnsw:space": "cosine"})
|
| 60 |
+
# txts0: Intentions
|
| 61 |
+
#------------------
|
| 62 |
+
txts0=[
|
| 63 |
+
"Ich suche ein KI-Programm mit bestimmten Fähigkeiten.", # 1a
|
| 64 |
+
#"Ich suche kein KI-Programm mit bestimmten Fähigkeiten.", # !1a
|
| 65 |
+
"Ich habe ein KI-Programm und habe Fragen zur Benutzung.", # !1a (besser, um 1a und 1b abzugrenzen)
|
| 66 |
+
"Ich habe ein KI-Programm und habe Fragen zur Benutzung.", # 1b
|
| 67 |
+
#"Ich habe kein KI-Programm und habe keine Fragen zur Benutzung.", # !1b
|
| 68 |
+
"Ich habe eine allgemeine Frage ohne KI-Bezug." # !1b (greift besser bei Alltagsfragen)
|
| 69 |
+
]
|
| 70 |
+
# txts1a: RAG-Infos for first intention:
|
| 71 |
+
#---------------------------------------
|
| 72 |
+
txts1a=[
|
| 73 |
"Text generating AI model mistralai/Mixtral-8x7B-Instruct-v0.1: Suitable for text generation, e.g., social media content, marketing copy, blog posts, short stories, etc.",
|
| 74 |
"Image generating AI model stabilityai/sdxl-turbo: Suitable for image generation, e.g., illustrations, graphics, AI art, etc.",
|
| 75 |
"Audio transcribing AI model openai/whisper-large-v3: Suitable for audio-transcription in different languages",
|
|
|
|
| 77 |
"Code generating AI model deepseek-ai/deepseek-coder-6.7b-instruct: Suitable for programming in Python, JavaScript, PHP, Bash and many other programming languages.",
|
| 78 |
"Translation AI model Helsinki-NLP/opus-mt: Suitable for translating text, e.g., from English to German or vice versa",
|
| 79 |
"Search result-integrating AI model phind/phind-v9-model: Suitable for researching current topics and for obtaining precise and up-to-date answers to questions based on web search results"
|
| 80 |
+
]
|
| 81 |
+
# txts1b: RAG-Infos for second intention
|
| 82 |
+
#----------------------------------------
|
| 83 |
+
txts1b=[
|
| 84 |
+
"Für Fragen zur Umsetzung von KI-Verfahren ist das KI-basierte Assistenzsystem nicht geeignet. Möglicherweise empfiehlt sich ein KI-Modell mit Internetzugriff, wie beispielsweise phind.com, oder das Kontaktieren eines Experten wie Dr. Andreas Fischer (andreasfischer1985@web.de)."
|
| 85 |
+
]
|
| 86 |
+
#meta=[{"type":"0", "type2":"0","source":"AF"}]*len(txts0)+[{"type":"1a","type2":"0","source":"AF"}]*len(txts1a)+[{"type":"1b","type2":"0","source":"AF"}]*len(txts1b)
|
| 87 |
+
meta = []
|
| 88 |
+
for _ in range(len(txts0)):
|
| 89 |
+
meta.append({"type":"0", "type2":"0","source":"AF"})
|
| 90 |
+
for _ in range(len(txts1a)):
|
| 91 |
+
meta.append({"type":"1a","type2":"0","source":"AF"})
|
| 92 |
+
for _ in range(len(txts1b)):
|
| 93 |
+
meta.append({"type":"1b","type2":"0","source":"AF"})
|
| 94 |
+
|
| 95 |
+
#Change type2 for txt0-entries
|
| 96 |
+
#-----------------------------
|
| 97 |
+
meta[0]["type2"]="1a" # RAG mit txts1a
|
| 98 |
+
meta[1]["type2"]="!1a" # else
|
| 99 |
+
meta[2]["type2"]="1b" # RAG mit txts1b
|
| 100 |
+
meta[3]["type2"]="!1b" # else
|
| 101 |
+
txts=txts0+txts1a+txts1b
|
| 102 |
+
collection.add(
|
| 103 |
+
documents=txts,
|
| 104 |
+
ids=[str(i) for i in list(range(len(txts)))],
|
| 105 |
+
metadatas=meta
|
| 106 |
)
|
| 107 |
+
|
| 108 |
+
# Add entry to episodic memory
|
| 109 |
+
x=collection.get(include=[])["ids"]
|
| 110 |
+
if(True): #len(x)==0):
|
| 111 |
+
message="Ich bin der User."
|
| 112 |
+
response="Hallo User, wie kann ich dienen?"
|
| 113 |
+
x=collection.get(include=[])["ids"]
|
| 114 |
+
collection.add(
|
| 115 |
+
documents=[message,response],
|
| 116 |
+
metadatas=[
|
| 117 |
+
{"source": "ICH", "dialog": f"ICH: {message}\nDU: {response}", "type":"episode"},
|
| 118 |
+
{"source": "DU", "dialog": f"ICH: {message}\nDU: {response}", "type":"episode"}
|
| 119 |
+
],
|
| 120 |
+
ids=[str(len(x)+1),str(len(x)+2)]
|
| 121 |
+
)
|
| 122 |
+
RAGResults=collection.query(
|
| 123 |
+
query_texts=[message],
|
| 124 |
+
n_results=1,
|
| 125 |
+
#where={"source": "USER"}
|
| 126 |
+
)
|
| 127 |
+
RAGResults["metadatas"][0][0]["dialog"]
|
| 128 |
+
|
| 129 |
+
x=collection.get(include=[])["ids"]
|
| 130 |
+
x
|
| 131 |
+
collection.get() # Inspect db-entries
|
| 132 |
|
| 133 |
print("Database ready!")
|
| 134 |
print(collection.count())
|
| 135 |
|
| 136 |
+
rag0=collection.query(
|
| 137 |
+
query_texts=[message],
|
| 138 |
+
n_results=4,
|
| 139 |
+
where={"type": "0"}
|
| 140 |
+
)
|
| 141 |
+
x=rag0["metadatas"][0][0]["type2"]
|
| 142 |
+
x=[x["type2"] for x in rag0["metadatas"][0]]
|
| 143 |
+
x.index("1c") if "1c" in x else len(x)+1
|
| 144 |
+
|
| 145 |
|
| 146 |
+
# Get model
|
| 147 |
+
#-----------
|
| 148 |
|
| 149 |
+
import os
|
| 150 |
+
import requests
|
| 151 |
+
|
| 152 |
+
modelPath="/home/af/gguf/models/discolm_german_7b_v1.Q4_0.gguf"
|
| 153 |
+
if(os.path.exists(modelPath)==False):
|
| 154 |
+
#url="https://huggingface.co/TheBloke/WizardLM-13B-V1.2-GGUF/resolve/main/wizardlm-13b-v1.2.Q4_0.gguf"
|
| 155 |
+
#url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true"
|
| 156 |
+
#url="https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q4_0.gguf?download=true"
|
| 157 |
+
url="https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF/resolve/main/discolm_german_7b_v1.Q4_0.gguf?download=true"
|
| 158 |
+
response = requests.get(url)
|
| 159 |
+
with open("./model.gguf", mode="wb") as file:
|
| 160 |
+
file.write(response.content)
|
| 161 |
+
print("Model downloaded")
|
| 162 |
+
modelPath="./model.gguf"
|
| 163 |
+
|
| 164 |
+
print(modelPath)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
# Llama-cpp-Server
|
| 168 |
+
#------------------
|
| 169 |
|
| 170 |
+
import subprocess
|
| 171 |
+
n="20"
|
| 172 |
+
if("mixtral-8x7b-instruct" in modelPath): n="0" # mixtral seems to cause problems here...
|
| 173 |
+
|
| 174 |
+
command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "8", "--n_gpu_layers", n]
|
| 175 |
+
subprocess.Popen(command)
|
| 176 |
+
print("Server ready!")
|
| 177 |
|
| 178 |
|
| 179 |
# Gradio-GUI
|
| 180 |
#------------
|
| 181 |
|
| 182 |
+
def extend_prompt(message="", history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4): #float("Inf")
|
| 183 |
+
if zeichenlimit is None: zeichenlimit=1000000000 # :-)
|
| 184 |
+
template0="[INST] {system} [/INST]</s>" #<s>
|
| 185 |
+
template1="[INST] {message} [/INST] "
|
| 186 |
+
template2="{response}</s>"
|
| 187 |
+
if("mixtral-8x7b-instruct" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
|
| 188 |
+
template0="[INST] {system} [/INST]</s>" #<s>
|
| 189 |
+
template1="[INST] {message} [/INST] "
|
| 190 |
+
template2="{response}</s>"
|
| 191 |
+
if("Mistral-7B-Instruct" in modelPath): #https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
|
| 192 |
+
template0="[INST] {system} [/INST]</s>" #<s>
|
| 193 |
+
template1="[INST] {message} [/INST] "
|
| 194 |
+
template2="{response}</s>"
|
| 195 |
+
if("openchat-3.5" in modelPath): #https://huggingface.co/TheBloke/openchat-3.5-0106-GGUF
|
| 196 |
+
template0="GPT4 Correct User: {system}<|end_of_turn|>GPT4 Correct Assistant: Okay.<|end_of_turn|>"
|
| 197 |
+
template1="GPT4 Correct User: {message}<|end_of_turn|>GPT4 Correct Assistant: "
|
| 198 |
+
template2="{response}<|end_of_turn|>"
|
| 199 |
+
if("SauerkrautLM-7b-HerO" in modelPath): #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO
|
| 200 |
+
template0="<|im_start|>system\n{system}<|im_end|>\n"
|
| 201 |
+
template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
|
| 202 |
+
template2="{response}<|im_end|>\n"
|
| 203 |
+
if("discolm_german_7b" in modelPath): #https://huggingface.co/DiscoResearch/DiscoLM_German_7b_v1
|
| 204 |
+
template0="<|im_start|>system\n{system}<|im_end|>\n"
|
| 205 |
+
template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
|
| 206 |
+
template2="{response}<|im_end|>\n"
|
| 207 |
+
if("WizardLM-13B-V1.2" in modelPath): #https://huggingface.co/WizardLM/WizardLM-13B-V1.2
|
| 208 |
+
template0="{system} " #<s>
|
| 209 |
+
template1="USER: {message} ASSISTANT: "
|
| 210 |
+
template2="{response}</s>"
|
| 211 |
+
if("phi-2" in modelPath): #https://huggingface.co/TheBloke/phi-2-GGUF
|
| 212 |
+
template0="Instruct: {system}\nOutput: Okay.\n"
|
| 213 |
+
template1="Instruct: {message}\nOutput:"
|
| 214 |
+
template2="{response}\n"
|
| 215 |
+
prompt = ""
|
| 216 |
+
if RAGAddon is not None:
|
| 217 |
+
system += RAGAddon
|
| 218 |
+
if system is not None:
|
| 219 |
+
prompt += template0.format(system=system) #"<s>"
|
| 220 |
+
if history is not None:
|
| 221 |
+
for user_message, bot_response in history[-historylimit:]:
|
| 222 |
+
if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit]) #"[INST] {user_prompt} [/INST] "
|
| 223 |
+
if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit]) #"{bot_response}</s> "
|
| 224 |
+
if message is not None: prompt += template1.format(message=message[:zeichenlimit]) #"[INST] {message} [/INST]"
|
| 225 |
+
if system2 is not None:
|
| 226 |
+
prompt += system2
|
| 227 |
+
return prompt
|
| 228 |
+
|
| 229 |
import gradio as gr
|
| 230 |
+
import requests
|
| 231 |
import json
|
| 232 |
+
from datetime import datetime
|
| 233 |
+
import os
|
| 234 |
+
import re
|
| 235 |
|
| 236 |
+
def response(message, history):
|
| 237 |
+
settings="Temporär"
|
| 238 |
+
|
| 239 |
+
# Preprocessing to revent simple forms of prompt injection:
|
| 240 |
+
#----------------------------------------------------------
|
| 241 |
+
|
| 242 |
+
message=message.replace("[INST]","")
|
| 243 |
+
message=message.replace("[/INST]","")
|
| 244 |
+
message=re.sub("<[|](im_start|im_end|end_of_turn)[|]>", '', message)
|
| 245 |
+
|
| 246 |
+
# Load Memory if settings=="Permanent"
|
| 247 |
+
#-------------------------------------
|
| 248 |
+
if (settings=="Permanent"):
|
| 249 |
+
if((len(history)==0)&(os.path.isfile(filename))): history=json.load(open(filename,'r',encoding="utf-8")) # retrieve history (if available)
|
| 250 |
+
|
| 251 |
+
system="Du bist ein deutschsprachiges KI-basiertes Assistenzsystem."
|
| 252 |
+
|
| 253 |
+
#RAG-layer 0: Intention-RAG
|
| 254 |
+
#---------------------------
|
| 255 |
+
typeResults=collection.query(
|
| 256 |
+
query_texts=[message],
|
| 257 |
+
n_results=4,
|
| 258 |
+
where={"type": "0"}
|
| 259 |
+
)
|
| 260 |
+
myType=typeResults["metadatas"][0][0]["type2"] # einfachste Variante
|
| 261 |
+
x=[x["type2"] for x in typeResults["metadatas"][0]] # liste die type2-Einträge auf
|
| 262 |
+
myType="1a" if ((x.index("1a") if "1a" in x else len(x)+1) < (x.index("!1a") if "!1a" in x else len(x)+1)) else "else" # setze 1a wenn es besser passt als !1a
|
| 263 |
+
if ((x.index("1b") if "1b" in x else len(x)+1) < (x.index("1a") if "1a" in x else len(x)+1)): # prüfe 1b wenn 1b besser passt als 1a
|
| 264 |
+
if ((x.index("1b") if "1b" in x else len(x)+1) < (x.index("!1b") if "!1b" in x else len(x)+1)): myType="1b" # setze 1b wenn besser als !1b (sonst lass 1a/else)
|
| 265 |
+
|
| 266 |
+
print("Message:"+message+"\n\nIntention-Type: "+myType+"\n\n"+str(typeResults))
|
| 267 |
+
|
| 268 |
+
#RAG-layer 1: Respond with CustomDB-RAG (1a, 1b) or Memory-RAG
|
| 269 |
+
#--------------------------------------------------------------
|
| 270 |
+
rag=None
|
| 271 |
+
historylimit=4
|
| 272 |
+
combination=None
|
| 273 |
+
|
| 274 |
+
## RAG 1a: Respond with CustomDB-RAG
|
| 275 |
+
#-----------------------------------
|
| 276 |
+
if(myType=="1a"):
|
| 277 |
+
|
| 278 |
+
RAGResults=collection.query(
|
| 279 |
+
query_texts=[message],
|
| 280 |
n_results=2,
|
| 281 |
+
where={"type": myType}
|
| 282 |
#where_document={"$contains":"search_string"}
|
| 283 |
)
|
| 284 |
+
dists=["<br><small>(relevance: "+str(round((1-d)*100)/100)+";" for d in RAGResults['distances'][0]]
|
| 285 |
+
sources=["source: "+s["source"]+")</small>" for s in RAGResults['metadatas'][0]]
|
| 286 |
+
texts=RAGResults['documents'][0]
|
| 287 |
+
combination = zip(texts,dists,sources)
|
| 288 |
combination = [' '.join(triplets) for triplets in combination]
|
| 289 |
+
#print(combination)
|
| 290 |
+
rag="\n\n"
|
| 291 |
+
rag += "Mit Blick auf die aktuelle Äußerung des Users erinnerst du dich insb. an folgende KI-Verfahren aus unserer Datenbank:\n"
|
| 292 |
+
rag += str(texts)
|
| 293 |
+
rag += "\n\nIm Folgenden siehst du den jüngsten Dialog-Verlauf:"
|
| 294 |
+
|
| 295 |
+
else:
|
| 296 |
+
|
| 297 |
+
## RAG 1a: Respond with CustomDB-RAG
|
| 298 |
+
#-----------------------------------
|
| 299 |
+
if(myType=="1b"):
|
| 300 |
+
|
| 301 |
+
RAGResults=collection.query(
|
| 302 |
+
query_texts=[message],
|
| 303 |
+
n_results=2,
|
| 304 |
+
where={"type": myType}
|
| 305 |
+
#where_document={"$contains":"search_string"}
|
| 306 |
+
)
|
| 307 |
+
dists=["<br><small>(relevance: "+str(round((1-d)*100)/100)+";" for d in RAGResults['distances'][0]]
|
| 308 |
+
sources=["source: "+s["source"]+")</small>" for s in RAGResults['metadatas'][0]]
|
| 309 |
+
texts=RAGResults['documents'][0]
|
| 310 |
+
combination = zip(texts,dists,sources)
|
| 311 |
+
combination = [' '.join(triplets) for triplets in combination]
|
| 312 |
+
#print(combination)
|
| 313 |
+
rag="\n\n"
|
| 314 |
+
rag += "Beziehe dich in deiner Antwort AUSSCHLIEßLICH auf die folgenden Informationen:\n"
|
| 315 |
+
rag += str(texts)
|
| 316 |
+
rag += "\n\nIm Folgenden siehst du den jüngsten Dialog-Verlauf:"
|
| 317 |
+
|
| 318 |
+
## Else: Respond with Memory-RAG
|
| 319 |
+
#--------------------------------
|
| 320 |
+
else:
|
| 321 |
+
|
| 322 |
+
x=collection.get(include=[])["ids"]
|
| 323 |
+
if(len(x)>(historylimit*2)): # turn on RAG when the database contains entries that are not shown within historylimit
|
| 324 |
+
RAGResults=collection.query(
|
| 325 |
+
query_texts=[message],
|
| 326 |
+
n_results=1,
|
| 327 |
+
where={"type": "episode"}
|
| 328 |
+
)
|
| 329 |
+
texts=RAGResults["metadatas"][0][0]["dialog"] #str()
|
| 330 |
+
#print("Message: "+message+"\n\nBest Match: "+texts)
|
| 331 |
+
rag="\n\n"
|
| 332 |
+
rag += "Mit Blick auf die aktuelle Äußerung des Users erinnerst du dich insb. an folgende Episode aus eurem Dialog:\n"
|
| 333 |
+
rag += str(texts)
|
| 334 |
+
rag += "\n\nIm Folgenden siehst du den jüngsten Dialog-Verlauf:"
|
| 335 |
+
|
| 336 |
+
# Request Response from LLM:
|
| 337 |
+
system2=None # system2 can be used as fictive first words of the AI, which are not displayed or stored
|
| 338 |
+
print("RAG: "+rag)
|
| 339 |
+
print("System: "+system+"\n\nMessage: "+message)
|
| 340 |
+
prompt=extend_prompt(
|
| 341 |
+
message, # current message of the user
|
| 342 |
+
history, # complete history
|
| 343 |
+
system, # system prompt
|
| 344 |
+
rag, # RAG-component added to the system prompt
|
| 345 |
+
system2, # fictive first words of the AI (neither displayed nor stored)
|
| 346 |
+
historylimit=historylimit # number of past messages to consider for response to current message
|
| 347 |
+
)
|
| 348 |
+
print(prompt)
|
| 349 |
+
# url="https://afischer1985-wizardlm-13b-v1-2-q4-0-gguf.hf.space/v1/completions"
|
| 350 |
+
url="http://0.0.0.0:2600/v1/completions"
|
| 351 |
+
body={"prompt":prompt,"max_tokens":None, "echo":"False","stream":"True"} # e.g. Mixtral-Instruct
|
| 352 |
+
if("discolm_german_7b" in modelPath): body.update({"stop": ["<|im_end|>"]}) # fix stop-token of DiscoLM
|
| 353 |
+
response="" #+"("+myType+")\n"
|
| 354 |
+
buffer=""
|
| 355 |
+
print("URL: "+url)
|
| 356 |
+
print("User: "+message+"\nAI: ")
|
| 357 |
+
for text in requests.post(url, json=body, stream=True): #-H 'accept: application/json' -H 'Content-Type: application/json'
|
| 358 |
+
if buffer is None: buffer=""
|
| 359 |
+
buffer=str("".join(buffer))
|
| 360 |
+
# print("*** Raw String: "+str(text)+"\n***\n")
|
| 361 |
+
text=text.decode('utf-8')
|
| 362 |
+
if((text.startswith(": ping -")==False) & (len(text.strip("\n\r"))>0)): buffer=buffer+str(text)
|
| 363 |
+
# print("\n*** Buffer: "+str(buffer)+"\n***\n")
|
| 364 |
+
buffer=buffer.split('"finish_reason": null}]}')
|
| 365 |
+
if(len(buffer)==1):
|
| 366 |
+
buffer="".join(buffer)
|
| 367 |
+
pass
|
| 368 |
+
if(len(buffer)==2):
|
| 369 |
+
part=buffer[0]+'"finish_reason": null}]}'
|
| 370 |
+
if(part.lstrip('\n\r').startswith("data: ")): part=part.lstrip('\n\r').replace("data: ", "")
|
| 371 |
+
try:
|
| 372 |
+
part = str(json.loads(part)["choices"][0]["text"])
|
| 373 |
+
print(part, end="", flush=True)
|
| 374 |
+
response=response+part
|
| 375 |
+
buffer="" # reset buffer
|
| 376 |
+
except Exception as e:
|
| 377 |
+
print("Exception:"+str(e))
|
| 378 |
+
pass
|
| 379 |
+
yield response
|
| 380 |
+
if((myType=="1a")|(myType=="1b")): #add RAG-results to chat-output if appropriate
|
| 381 |
+
response=response+"\n\n<br><details><summary><strong>Sources</strong></summary><br><ul>"+ "".join(["<li>" + s + "</li>" for s in combination])+"</ul></details>"
|
| 382 |
+
yield response
|
| 383 |
+
history.append((message, response)) # add current dialog to history
|
| 384 |
+
# Store current state in DB if settings=="Permanent"
|
| 385 |
+
if (settings=="Permanent"):
|
| 386 |
+
x=collection.get(include=[])["ids"] # add current dialog to db
|
| 387 |
+
collection.add(
|
| 388 |
+
documents=[message,response],
|
| 389 |
+
metadatas=[
|
| 390 |
+
{ "source": "ICH", "dialog": f"ICH: {message.strip()}\n DU: {response.strip()}", "type":"episode"},
|
| 391 |
+
{ "source": "DU", "dialog": f"ICH: {message.strip()}\n DU: {response.strip()}", "type":"episode"}
|
| 392 |
+
],
|
| 393 |
+
ids=[str(len(x)+1),str(len(x)+2)]
|
| 394 |
+
)
|
| 395 |
+
json.dump(history,open(filename,'w',encoding="utf-8"),ensure_ascii=False)
|
| 396 |
+
|
| 397 |
+
gr.ChatInterface(
|
| 398 |
+
response,
|
| 399 |
+
chatbot=gr.Chatbot(value=[[None,"Herzlich willkommen! Ich bin ein KI-basiertes Assistenzsystem, das für jede Anfrage die am besten geeigneten KI-Tools empfiehlt.<br>Aktuell bin ich wenig mehr als eine Tech-Demo und kenne nur 7 KI-Modelle - also sei bitte nicht zu streng mit mir.<br>Was ist dein Anliegen?"]],render_markdown=True)
|
| 400 |
+
title="German AI-Interface to the Hugging Face Hub with advanced RAG",
|
| 401 |
+
#additional_inputs=[gr.Dropdown(["Permanent","Temporär"],value="Temporär",label="Dialog sichern?")]
|
| 402 |
+
).queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864)
|
| 403 |
+
print("Interface up and running!")
|
| 404 |
+
|