Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, tempfile, qdrant_client
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from llama_index.llms import OpenAI, Gemini, Cohere
|
| 4 |
+
from llama_index.embeddings import HuggingFaceEmbedding
|
| 5 |
+
from llama_index import SimpleDirectoryReader, ServiceContext, VectorStoreIndex, StorageContext
|
| 6 |
+
from llama_index.node_parser import SentenceSplitter, CodeSplitter, SemanticSplitterNodeParser, TokenTextSplitter
|
| 7 |
+
from llama_index.node_parser.file import HTMLNodeParser, JSONNodeParser, MarkdownNodeParser
|
| 8 |
+
from llama_index.vector_stores import QdrantVectorStore, PineconeVectorStore
|
| 9 |
+
from pinecone import Pinecone
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def reset_pipeline_generated():
|
| 13 |
+
if 'pipeline_generated' in st.session_state:
|
| 14 |
+
st.session_state['pipeline_generated'] = False
|
| 15 |
+
|
| 16 |
+
def upload_file():
|
| 17 |
+
file = st.file_uploader("Upload a file", on_change=reset_pipeline_generated)
|
| 18 |
+
if file is not None:
|
| 19 |
+
file_path = save_uploaded_file(file)
|
| 20 |
+
|
| 21 |
+
if file_path:
|
| 22 |
+
loaded_file = SimpleDirectoryReader(input_files=[file_path]).load_data()
|
| 23 |
+
print(f"Total documents: {len(loaded_file)}")
|
| 24 |
+
|
| 25 |
+
st.success(f"File uploaded successfully. Total documents loaded: {len(loaded_file)}")
|
| 26 |
+
#print(loaded_file)
|
| 27 |
+
return loaded_file
|
| 28 |
+
return None
|
| 29 |
+
|
| 30 |
+
@st.cache_data
|
| 31 |
+
def save_uploaded_file(uploaded_file):
|
| 32 |
+
try:
|
| 33 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file:
|
| 34 |
+
tmp_file.write(uploaded_file.getvalue())
|
| 35 |
+
return tmp_file.name
|
| 36 |
+
except Exception as e:
|
| 37 |
+
st.error(f"Error saving file: {e}")
|
| 38 |
+
return None
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def select_llm():
|
| 42 |
+
st.header("Choose LLM")
|
| 43 |
+
llm_choice = st.selectbox("Select LLM", ["Gemini", "Cohere", "GPT-3.5", "GPT-4"], on_change=reset_pipeline_generated)
|
| 44 |
+
|
| 45 |
+
if llm_choice == "GPT-3.5":
|
| 46 |
+
llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo-1106")
|
| 47 |
+
st.write(f"{llm_choice} selected")
|
| 48 |
+
elif llm_choice == "GPT-4":
|
| 49 |
+
llm = OpenAI(temperature=0.1, model="gpt-4-1106-preview")
|
| 50 |
+
st.write(f"{llm_choice} selected")
|
| 51 |
+
elif llm_choice == "Gemini":
|
| 52 |
+
llm = Gemini(model="models/gemini-pro")
|
| 53 |
+
st.write(f"{llm_choice} selected")
|
| 54 |
+
elif llm_choice == "Cohere":
|
| 55 |
+
llm = Cohere(model="command", api_key=os.environ['COHERE_API_TOKEN'])
|
| 56 |
+
st.write(f"{llm_choice} selected")
|
| 57 |
+
return llm, llm_choice
|
| 58 |
+
|
| 59 |
+
def select_embedding_model():
|
| 60 |
+
st.header("Choose Embedding Model")
|
| 61 |
+
model_names = [
|
| 62 |
+
"BAAI/bge-small-en-v1.5",
|
| 63 |
+
"WhereIsAI/UAE-Large-V1",
|
| 64 |
+
"BAAI/bge-large-en-v1.5",
|
| 65 |
+
"khoa-klaytn/bge-small-en-v1.5-angle",
|
| 66 |
+
"BAAI/bge-base-en-v1.5",
|
| 67 |
+
"llmrails/ember-v1",
|
| 68 |
+
"jamesgpt1/sf_model_e5",
|
| 69 |
+
"thenlper/gte-large",
|
| 70 |
+
"infgrad/stella-base-en-v2",
|
| 71 |
+
"thenlper/gte-base"
|
| 72 |
+
]
|
| 73 |
+
selected_model = st.selectbox("Select Embedding Model", model_names, on_change=reset_pipeline_generated)
|
| 74 |
+
with st.spinner("Please wait") as status:
|
| 75 |
+
embed_model = HuggingFaceEmbedding(model_name=selected_model)
|
| 76 |
+
st.session_state['embed_model'] = embed_model
|
| 77 |
+
st.markdown(F"Embedding Model: {embed_model.model_name}")
|
| 78 |
+
st.markdown(F"Embed Batch Size: {embed_model.embed_batch_size}")
|
| 79 |
+
st.markdown(F"Embed Batch Size: {embed_model.max_length}")
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
return embed_model, selected_model
|
| 83 |
+
|
| 84 |
+
def select_node_parser():
|
| 85 |
+
st.header("Choose Node Parser")
|
| 86 |
+
parser_types = ["SentenceSplitter", "CodeSplitter", "SemanticSplitterNodeParser",
|
| 87 |
+
"TokenTextSplitter", "HTMLNodeParser", "JSONNodeParser", "MarkdownNodeParser"]
|
| 88 |
+
parser_type = st.selectbox("Select Node Parser", parser_types, on_change=reset_pipeline_generated)
|
| 89 |
+
|
| 90 |
+
parser_params = {}
|
| 91 |
+
if parser_type == "HTMLNodeParser":
|
| 92 |
+
tags = st.text_input("Enter tags separated by commas", "p, h1")
|
| 93 |
+
tag_list = tags.split(',')
|
| 94 |
+
parser = HTMLNodeParser(tags=tag_list)
|
| 95 |
+
parser_params = {'tags': tag_list}
|
| 96 |
+
|
| 97 |
+
elif parser_type == "JSONNodeParser":
|
| 98 |
+
parser = JSONNodeParser()
|
| 99 |
+
|
| 100 |
+
elif parser_type == "MarkdownNodeParser":
|
| 101 |
+
parser = MarkdownNodeParser()
|
| 102 |
+
|
| 103 |
+
elif parser_type == "CodeSplitter":
|
| 104 |
+
language = st.text_input("Language", "python")
|
| 105 |
+
chunk_lines = st.number_input("Chunk Lines", min_value=1, value=40)
|
| 106 |
+
chunk_lines_overlap = st.number_input("Chunk Lines Overlap", min_value=0, value=15)
|
| 107 |
+
max_chars = st.number_input("Max Chars", min_value=1, value=1500)
|
| 108 |
+
parser = CodeSplitter(language=language, chunk_lines=chunk_lines, chunk_lines_overlap=chunk_lines_overlap, max_chars=max_chars)
|
| 109 |
+
parser_params = {'language': language, 'chunk_lines': chunk_lines, 'chunk_lines_overlap': chunk_lines_overlap, 'max_chars': max_chars}
|
| 110 |
+
|
| 111 |
+
elif parser_type == "SentenceSplitter":
|
| 112 |
+
chunk_size = st.number_input("Chunk Size", min_value=1, value=1024)
|
| 113 |
+
chunk_overlap = st.number_input("Chunk Overlap", min_value=0, value=20)
|
| 114 |
+
parser = SentenceSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
| 115 |
+
parser_params = {'chunk_size': chunk_size, 'chunk_overlap': chunk_overlap}
|
| 116 |
+
|
| 117 |
+
elif parser_type == "SemanticSplitterNodeParser":
|
| 118 |
+
if 'embed_model' not in st.session_state:
|
| 119 |
+
st.warning("Please select an embedding model first.")
|
| 120 |
+
return None, None
|
| 121 |
+
|
| 122 |
+
embed_model = st.session_state['embed_model']
|
| 123 |
+
buffer_size = st.number_input("Buffer Size", min_value=1, value=1)
|
| 124 |
+
breakpoint_percentile_threshold = st.number_input("Breakpoint Percentile Threshold", min_value=0, max_value=100, value=95)
|
| 125 |
+
parser = SemanticSplitterNodeParser(buffer_size=buffer_size, breakpoint_percentile_threshold=breakpoint_percentile_threshold, embed_model=embed_model)
|
| 126 |
+
parser_params = {'buffer_size': buffer_size, 'breakpoint_percentile_threshold': breakpoint_percentile_threshold}
|
| 127 |
+
|
| 128 |
+
elif parser_type == "TokenTextSplitter":
|
| 129 |
+
chunk_size = st.number_input("Chunk Size", min_value=1, value=1024)
|
| 130 |
+
chunk_overlap = st.number_input("Chunk Overlap", min_value=0, value=20)
|
| 131 |
+
parser = TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
| 132 |
+
parser_params = {'chunk_size': chunk_size, 'chunk_overlap': chunk_overlap}
|
| 133 |
+
|
| 134 |
+
# Save the parser type and parameters to the session state
|
| 135 |
+
st.session_state['node_parser_type'] = parser_type
|
| 136 |
+
st.session_state['node_parser_params'] = parser_params
|
| 137 |
+
|
| 138 |
+
return parser, parser_type
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def select_response_synthesis_method():
|
| 142 |
+
st.header("Choose Response Synthesis Method")
|
| 143 |
+
response_modes = [
|
| 144 |
+
"refine",
|
| 145 |
+
"tree_summarize",
|
| 146 |
+
"compact",
|
| 147 |
+
"simple_summarize",
|
| 148 |
+
"accumulate",
|
| 149 |
+
"compact_accumulate"
|
| 150 |
+
]
|
| 151 |
+
selected_mode = st.selectbox("Select Response Mode", response_modes, on_change=reset_pipeline_generated)
|
| 152 |
+
response_mode = selected_mode
|
| 153 |
+
return response_mode, selected_mode
|
| 154 |
+
|
| 155 |
+
def select_vector_store():
|
| 156 |
+
st.header("Choose Vector Store")
|
| 157 |
+
vector_stores = ["Simple", "Pinecone", "Qdrant"]
|
| 158 |
+
selected_store = st.selectbox("Select Vector Store", vector_stores, on_change=reset_pipeline_generated)
|
| 159 |
+
|
| 160 |
+
vector_store = None
|
| 161 |
+
|
| 162 |
+
if selected_store == "Pinecone":
|
| 163 |
+
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
|
| 164 |
+
index = pc.Index("test")
|
| 165 |
+
vector_store = PineconeVectorStore(pinecone_index=index)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
elif selected_store == "Qdrant":
|
| 169 |
+
client = qdrant_client.QdrantClient(location=":memory:")
|
| 170 |
+
vector_store = QdrantVectorStore(client=client, collection_name="sampledata")
|
| 171 |
+
st.write(selected_store)
|
| 172 |
+
return vector_store, selected_store
|
| 173 |
+
|
| 174 |
+
def generate_rag_pipeline(file, llm, embed_model, node_parser, response_mode, vector_store):
|
| 175 |
+
if vector_store is not None:
|
| 176 |
+
# Set storage context if vector_store is not None
|
| 177 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
| 178 |
+
else:
|
| 179 |
+
storage_context = None
|
| 180 |
+
|
| 181 |
+
# Create the service context
|
| 182 |
+
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model, node_parser=node_parser)
|
| 183 |
+
|
| 184 |
+
# Create the vector index
|
| 185 |
+
vector_index = VectorStoreIndex.from_documents(documents=file, storage_context=storage_context, service_context=service_context, show_progress=True)
|
| 186 |
+
if storage_context:
|
| 187 |
+
vector_index.storage_context.persist(persist_dir="persist_dir")
|
| 188 |
+
|
| 189 |
+
# Create the query engine
|
| 190 |
+
query_engine = vector_index.as_query_engine(
|
| 191 |
+
response_mode=response_mode,
|
| 192 |
+
verbose=True,
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
return query_engine
|
| 196 |
+
|
| 197 |
+
def send_query():
|
| 198 |
+
query = st.session_state['query']
|
| 199 |
+
response = f"Response for the query: {query}"
|
| 200 |
+
st.markdown(response)
|
| 201 |
+
|
| 202 |
+
def generate_code_snippet(llm_choice, embed_model_choice, node_parser_choice, response_mode, vector_store_choice):
|
| 203 |
+
node_parser_params = st.session_state.get('node_parser_params', {})
|
| 204 |
+
print(node_parser_params)
|
| 205 |
+
code_snippet = "from llama_index.llms import OpenAI, Gemini, Cohere\n"
|
| 206 |
+
code_snippet += "from llama_index.embeddings import HuggingFaceEmbedding\n"
|
| 207 |
+
code_snippet += "from llama_index import ServiceContext, VectorStoreIndex, StorageContext\n"
|
| 208 |
+
code_snippet += "from llama_index.node_parser import SentenceSplitter, CodeSplitter, SemanticSplitterNodeParser, TokenTextSplitter\n"
|
| 209 |
+
code_snippet += "from llama_index.node_parser.file import HTMLNodeParser, JSONNodeParser, MarkdownNodeParser\n"
|
| 210 |
+
code_snippet += "from llama_index.vector_stores import MilvusVectorStore, QdrantVectorStore\n"
|
| 211 |
+
code_snippet += "import qdrant_client\n\n"
|
| 212 |
+
|
| 213 |
+
# LLM initialization
|
| 214 |
+
if llm_choice == "GPT-3.5":
|
| 215 |
+
code_snippet += "llm = OpenAI(temperature=0.1, model='gpt-3.5-turbo-1106')\n"
|
| 216 |
+
elif llm_choice == "GPT-4":
|
| 217 |
+
code_snippet += "llm = OpenAI(temperature=0.1, model='gpt-4-1106-preview')\n"
|
| 218 |
+
elif llm_choice == "Gemini":
|
| 219 |
+
code_snippet += "llm = Gemini(model='models/gemini-pro')\n"
|
| 220 |
+
elif llm_choice == "Cohere":
|
| 221 |
+
code_snippet += "llm = Cohere(model='command', api_key='<YOUR_API_KEY>') # Replace <YOUR_API_KEY> with your actual API key\n"
|
| 222 |
+
|
| 223 |
+
# Embedding model initialization
|
| 224 |
+
code_snippet += f"embed_model = HuggingFaceEmbedding(model_name='{embed_model_choice}')\n\n"
|
| 225 |
+
|
| 226 |
+
# Node parser initialization
|
| 227 |
+
node_parsers = {
|
| 228 |
+
"SentenceSplitter": f"SentenceSplitter(chunk_size={node_parser_params.get('chunk_size', 1024)}, chunk_overlap={node_parser_params.get('chunk_overlap', 20)})",
|
| 229 |
+
"CodeSplitter": f"CodeSplitter(language={node_parser_params.get('language', 'python')}, chunk_lines={node_parser_params.get('chunk_lines', 40)}, chunk_lines_overlap={node_parser_params.get('chunk_lines_overlap', 15)}, max_chars={node_parser_params.get('max_chars', 1500)})",
|
| 230 |
+
"SemanticSplitterNodeParser": f"SemanticSplitterNodeParser(buffer_size={node_parser_params.get('buffer_size', 1)}, breakpoint_percentile_threshold={node_parser_params.get('breakpoint_percentile_threshold', 95)}, embed_model=embed_model)",
|
| 231 |
+
"TokenTextSplitter": f"TokenTextSplitter(chunk_size={node_parser_params.get('chunk_size', 1024)}, chunk_overlap={node_parser_params.get('chunk_overlap', 20)})",
|
| 232 |
+
"HTMLNodeParser": f"HTMLNodeParser(tags={node_parser_params.get('tags', ['p', 'h1'])})",
|
| 233 |
+
"JSONNodeParser": "JSONNodeParser()",
|
| 234 |
+
"MarkdownNodeParser": "MarkdownNodeParser()"
|
| 235 |
+
}
|
| 236 |
+
code_snippet += f"node_parser = {node_parsers[node_parser_choice]}\n\n"
|
| 237 |
+
|
| 238 |
+
# Response mode
|
| 239 |
+
code_snippet += f"response_mode = '{response_mode}'\n\n"
|
| 240 |
+
|
| 241 |
+
# Vector store initialization
|
| 242 |
+
if vector_store_choice == "Faiss":
|
| 243 |
+
code_snippet += "d = 1536\n"
|
| 244 |
+
code_snippet += "faiss_index = faiss.IndexFlatL2(d)\n"
|
| 245 |
+
code_snippet += "vector_store = FaissVectorStore(faiss_index=faiss_index)\n"
|
| 246 |
+
elif vector_store_choice == "Milvus":
|
| 247 |
+
code_snippet += "vector_store = MilvusVectorStore(dim=1536, overwrite=True)\n"
|
| 248 |
+
elif vector_store_choice == "Qdrant":
|
| 249 |
+
code_snippet += "client = qdrant_client.QdrantClient(location=':memory:')\n"
|
| 250 |
+
code_snippet += "vector_store = QdrantVectorStore(client=client, collection_name='sampledata')\n"
|
| 251 |
+
elif vector_store_choice == "Simple":
|
| 252 |
+
code_snippet += "vector_store = None # Simple in-memory vector store selected\n"
|
| 253 |
+
|
| 254 |
+
code_snippet += "\n# Finalizing the RAG pipeline setup\n"
|
| 255 |
+
code_snippet += "if vector_store is not None:\n"
|
| 256 |
+
code_snippet += " storage_context = StorageContext.from_defaults(vector_store=vector_store)\n"
|
| 257 |
+
code_snippet += "else:\n"
|
| 258 |
+
code_snippet += " storage_context = None\n\n"
|
| 259 |
+
|
| 260 |
+
code_snippet += "service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model, node_parser=node_parser)\n\n"
|
| 261 |
+
|
| 262 |
+
code_snippet += "_file = 'path_to_your_file' # Replace with the path to your file\n"
|
| 263 |
+
code_snippet += "vector_index = VectorStoreIndex.from_documents(documents=_file, storage_context=storage_context, service_context=service_context, show_progress=True)\n"
|
| 264 |
+
code_snippet += "if storage_context:\n"
|
| 265 |
+
code_snippet += " vector_index.storage_context.persist(persist_dir='persist_dir')\n\n"
|
| 266 |
+
|
| 267 |
+
code_snippet += "query_engine = vector_index.as_query_engine(response_mode=response_mode, verbose=True)\n"
|
| 268 |
+
|
| 269 |
+
return code_snippet
|
| 270 |
+
|
| 271 |
+
def main():
|
| 272 |
+
st.title("RAGArch: RAG Pipeline Tester and Code Generator")
|
| 273 |
+
st.markdown("""
|
| 274 |
+
- **Configure and Test RAG Pipelines with Custom Parameters**
|
| 275 |
+
- **Automatically Generate Plug-and-Play Implementation Code Based on Your Configuration**
|
| 276 |
+
""")
|
| 277 |
+
|
| 278 |
+
# Upload file
|
| 279 |
+
file = upload_file()
|
| 280 |
+
|
| 281 |
+
# Select RAG components
|
| 282 |
+
llm, llm_choice = select_llm()
|
| 283 |
+
embed_model, embed_model_choice = select_embedding_model()
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
node_parser, node_parser_choice = select_node_parser()
|
| 287 |
+
# Process nodes only if a file has been uploaded
|
| 288 |
+
if file is not None:
|
| 289 |
+
if node_parser:
|
| 290 |
+
nodes = node_parser.get_nodes_from_documents(file)
|
| 291 |
+
st.write("First node: ")
|
| 292 |
+
st.code(f"{nodes[0].text}")
|
| 293 |
+
|
| 294 |
+
response_mode, response_mode_choice = select_response_synthesis_method()
|
| 295 |
+
vector_store, vector_store_choice = select_vector_store()
|
| 296 |
+
|
| 297 |
+
# Generate RAG Pipeline Button
|
| 298 |
+
if file is not None:
|
| 299 |
+
if st.button("Generate RAG Pipeline"):
|
| 300 |
+
with st.spinner():
|
| 301 |
+
query_engine = generate_rag_pipeline(file, llm, embed_model, node_parser, response_mode, vector_store)
|
| 302 |
+
st.session_state['query_engine'] = query_engine
|
| 303 |
+
st.session_state['pipeline_generated'] = True
|
| 304 |
+
st.success("RAG Pipeline Generated Successfully!")
|
| 305 |
+
elif file is None:
|
| 306 |
+
st.error('Please upload a file')
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
# After generating the RAG pipeline
|
| 310 |
+
if st.session_state.get('pipeline_generated', False):
|
| 311 |
+
query = st.text_input("Enter your query", key='query')
|
| 312 |
+
if st.button("Send"):
|
| 313 |
+
if 'query_engine' in st.session_state:
|
| 314 |
+
response = st.session_state['query_engine'].query(query)
|
| 315 |
+
st.markdown(response, unsafe_allow_html=True)
|
| 316 |
+
else:
|
| 317 |
+
st.error("Query engine not initialized. Please generate the RAG pipeline first.")
|
| 318 |
+
|
| 319 |
+
if file and st.button("Generate Code Snippet"):
|
| 320 |
+
code_snippet = generate_code_snippet(llm_choice, embed_model_choice, node_parser_choice, response_mode_choice, vector_store_choice)
|
| 321 |
+
st.code(code_snippet, language='python')
|
| 322 |
+
|
| 323 |
+
if __name__ == "__main__":
|
| 324 |
+
main()
|