Spaces:
Running
Running
| import argparse | |
| import os | |
| import random | |
| import sys | |
| import time | |
| import tqdm | |
| sys.path.insert(0, "..") | |
| import numpy as np | |
| import torch | |
| import torch.backends.cudnn as cudnn | |
| from minigpt4.common.config import Config | |
| from minigpt4.common.dist_utils import get_rank | |
| from minigpt4.common.registry import registry | |
| from minigpt4.conversation.conversation_esm import Chat, CONV_VISION | |
| # imports modules for registration | |
| from minigpt4.datasets.builders import * | |
| from minigpt4.models import * | |
| from minigpt4.processors import * | |
| from minigpt4.runners import * | |
| from minigpt4.tasks import * | |
| import sys | |
| import esm | |
| import json | |
| DATASET_SPEC = "/home/ubuntu/proteinchat/dataset.json" | |
| ANN_PATH = "/home/ubuntu/proteinchat/data/qa_all.json" | |
| PDB_PATH = "/home/ubuntu/pt" | |
| SEQ_PATH = "/home/ubuntu/seq" | |
| OUTPUT_SAVE_PATH = "/home/ubuntu/proteinchat/eval/results/outputs" | |
| annotation = open(ANN_PATH, "r") | |
| annotation = json.load(annotation) | |
| dataset = open(DATASET_SPEC, "r") | |
| dataset = json.load(dataset) | |
| all_prots = dataset["test"] | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Demo") | |
| parser.add_argument("--cfg-path", required=True, help="path to configuration file.") | |
| parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.") | |
| parser.add_argument("--model", type=str, required=True, help="specify the model to load the model.") | |
| parser.add_argument( | |
| "--options", | |
| nargs="+", | |
| help="override some settings in the used config, the key-value pair " | |
| "in xxx=yyy format will be merged into config file (deprecate), " | |
| "change to --cfg-options instead.", | |
| ) | |
| args = parser.parse_args() | |
| return args | |
| def setup_seeds(config): | |
| seed = config.run_cfg.seed + get_rank() | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| cudnn.benchmark = False | |
| cudnn.deterministic = True | |
| print('Initializing Chat') | |
| args = parse_args() | |
| cfg = Config(args) | |
| model_config = cfg.model_cfg | |
| model_config.device_8bit = args.gpu_id | |
| model_cls = registry.get_model_class(model_config.arch) | |
| model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id)) | |
| vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train | |
| vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) | |
| chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id)) | |
| print('Initialization Finished') | |
| raw_output = {} | |
| score_output = {} | |
| START_SAMPLES = 0 | |
| # END_SAMPLES = 8806 | |
| END_SAMPLES = 160 | |
| all_prots = all_prots[START_SAMPLES : END_SAMPLES] | |
| for prot in tqdm.tqdm(all_prots): | |
| curr_prot_ann = annotation[prot] | |
| pdb_path = os.path.join(PDB_PATH, f"{prot}.pt") | |
| seq_path = os.path.join(SEQ_PATH, f"{prot}.pt") | |
| seq_embedding = torch.load(seq_path, map_location=torch.device('cpu')) | |
| sample_seq = seq_embedding.to('cuda:{}'.format(args.gpu_id)) | |
| if (seq_embedding.shape[1] > 384): | |
| continue | |
| raw_output[prot] = [] | |
| pdb_embedding = torch.load(pdb_path, map_location=torch.device('cpu')) | |
| sample_pdb = pdb_embedding.to('cuda:{}'.format(args.gpu_id)) | |
| for ann in curr_prot_ann: | |
| d = {} | |
| d["Q"] = ann["Q"] | |
| chat_state = CONV_VISION.copy() | |
| img_list = [] | |
| llm_message = chat.upload_protein(sample_pdb, sample_seq, chat_state, img_list) | |
| img_list = [mat.half() for mat in img_list] | |
| chat.ask(ann["Q"], chat_state) | |
| ans = chat.answer(conv=chat_state, | |
| img_list=img_list, | |
| num_beams=1, | |
| temperature=0.7, | |
| max_new_tokens=384, | |
| max_length=2048)[0] | |
| d["A"] = ans | |
| raw_output[prot].append(d) | |
| with open(os.path.join(OUTPUT_SAVE_PATH, f"{args.model}_eval_output.json"), 'w') as fp: | |
| json.dump(raw_output, fp, indent=4) |