Spaces:
Running
Running
| import json | |
| import os | |
| def fairness_t2i_agg(model, result_dir): | |
| model = model.split("/")[-1] | |
| result_path = os.path.join(result_dir, "fairness_t2i_summary.json") | |
| with open(result_path, "r") as file: | |
| results = json.load(file) | |
| agg_scores = {} | |
| agg_scores["score"] = results[model].pop("Average") * 100 | |
| agg_scores["subscenarios"] = results[model] | |
| for key in agg_scores["subscenarios"]: | |
| agg_scores["subscenarios"][key] = agg_scores["subscenarios"][key] * 100 | |
| return agg_scores | |
| def fairness_i2t_agg(model, result_dir): | |
| model = model.split("/")[-1] | |
| result_path = os.path.join(result_dir, "fairness_i2t_summary.json") | |
| with open(result_path, "r") as file: | |
| results = json.load(file) | |
| agg_scores = {} | |
| agg_scores["score"] = results[model].pop("Average") * 100 | |
| agg_scores["subscenarios"] = results[model] | |
| for key in agg_scores["subscenarios"]: | |
| agg_scores["subscenarios"][key] = agg_scores["subscenarios"][key] * 100 | |
| return agg_scores | |
| if __name__ == "__main__": | |
| t2i_models = [ # Average time spent running the following example | |
| "dall-e-2", | |
| "dall-e-3", | |
| "DeepFloyd/IF-I-M-v1.0", # 15.372 | |
| "dreamlike-art/dreamlike-photoreal-2.0", # 3.526 | |
| "prompthero/openjourney-v4", # 4.981 | |
| "stabilityai/stable-diffusion-xl-base-1.0", # 7.463 | |
| ] | |
| i2t_models = [ # Average time spent running the following example | |
| "gpt-4-vision-preview", | |
| "gpt-4o-2024-05-13", | |
| "llava-hf/llava-v1.6-vicuna-7b-hf" | |
| ] | |
| result_dir = "./data/results" | |
| print(fairness_i2t_agg(i2t_models[0], result_dir)) | |
| print(fairness_t2i_agg(t2i_models[0], result_dir)) |