Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Upload app.py
Browse files
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,92 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import time  # to simulate a real time data, time loop
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import numpy as np  # np mean, np random
         | 
| 4 | 
            +
            import pandas as pd  # read csv, df manipulation
         | 
| 5 | 
            +
            import plotly.express as px  # interactive charts
         | 
| 6 | 
            +
            import streamlit as st  # 🎈 data web app development
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            st.set_page_config(
         | 
| 9 | 
            +
                page_title="Real-Time Data Science Dashboard",
         | 
| 10 | 
            +
                page_icon="✅",
         | 
| 11 | 
            +
                layout="wide",
         | 
| 12 | 
            +
            )
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            # read csv from a github repo
         | 
| 15 | 
            +
            dataset_url = "https://raw.githubusercontent.com/Lexie88rus/bank-marketing-analysis/master/bank.csv"
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            # read csv from a URL
         | 
| 18 | 
            +
            @st.experimental_memo
         | 
| 19 | 
            +
            def get_data() -> pd.DataFrame:
         | 
| 20 | 
            +
                return pd.read_csv(dataset_url)
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            df = get_data()
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            # dashboard title
         | 
| 25 | 
            +
            st.title("Real-Time / Live Data Science Dashboard")
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            # top-level filters
         | 
| 28 | 
            +
            job_filter = st.selectbox("Select the Job", pd.unique(df["job"]))
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            # creating a single-element container
         | 
| 31 | 
            +
            placeholder = st.empty()
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            # dataframe filter
         | 
| 34 | 
            +
            df = df[df["job"] == job_filter]
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            # near real-time / live feed simulation
         | 
| 37 | 
            +
            for seconds in range(200):
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                df["age_new"] = df["age"] * np.random.choice(range(1, 5))
         | 
| 40 | 
            +
                df["balance_new"] = df["balance"] * np.random.choice(range(1, 5))
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                # creating KPIs
         | 
| 43 | 
            +
                avg_age = np.mean(df["age_new"])
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                count_married = int(
         | 
| 46 | 
            +
                    df[(df["marital"] == "married")]["marital"].count()
         | 
| 47 | 
            +
                    + np.random.choice(range(1, 30))
         | 
| 48 | 
            +
                )
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                balance = np.mean(df["balance_new"])
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                with placeholder.container():
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                    # create three columns
         | 
| 55 | 
            +
                    kpi1, kpi2, kpi3 = st.columns(3)
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                    # fill in those three columns with respective metrics or KPIs
         | 
| 58 | 
            +
                    kpi1.metric(
         | 
| 59 | 
            +
                        label="Age ⏳",
         | 
| 60 | 
            +
                        value=round(avg_age),
         | 
| 61 | 
            +
                        delta=round(avg_age) - 10,
         | 
| 62 | 
            +
                    )
         | 
| 63 | 
            +
                    
         | 
| 64 | 
            +
                    kpi2.metric(
         | 
| 65 | 
            +
                        label="Married Count 💍",
         | 
| 66 | 
            +
                        value=int(count_married),
         | 
| 67 | 
            +
                        delta=-10 + count_married,
         | 
| 68 | 
            +
                    )
         | 
| 69 | 
            +
                    
         | 
| 70 | 
            +
                    kpi3.metric(
         | 
| 71 | 
            +
                        label="A/C Balance $",
         | 
| 72 | 
            +
                        value=f"$ {round(balance,2)} ",
         | 
| 73 | 
            +
                        delta=-round(balance / count_married) * 100,
         | 
| 74 | 
            +
                    )
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                    # create two columns for charts
         | 
| 77 | 
            +
                    fig_col1, fig_col2 = st.columns(2)
         | 
| 78 | 
            +
                    with fig_col1:
         | 
| 79 | 
            +
                        st.markdown("### First Chart")
         | 
| 80 | 
            +
                        fig = px.density_heatmap(
         | 
| 81 | 
            +
                            data_frame=df, y="age_new", x="marital"
         | 
| 82 | 
            +
                        )
         | 
| 83 | 
            +
                        st.write(fig)
         | 
| 84 | 
            +
                        
         | 
| 85 | 
            +
                    with fig_col2:
         | 
| 86 | 
            +
                        st.markdown("### Second Chart")
         | 
| 87 | 
            +
                        fig2 = px.histogram(data_frame=df, x="age_new")
         | 
| 88 | 
            +
                        st.write(fig2)
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                    st.markdown("### Detailed Data View")
         | 
| 91 | 
            +
                    st.dataframe(df)
         | 
| 92 | 
            +
                    time.sleep(1)
         | 

