AIEcosystem commited on
Commit
142d571
·
verified ·
1 Parent(s): e932235

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +45 -16
src/streamlit_app.py CHANGED
@@ -333,41 +333,69 @@ def generate_entity_csv(df):
333
  return csv_buffer
334
  # -----------------------------------
335
  # --- Existing App Functionality (HTML) ---
336
-
337
  def generate_html_report(df, text_input, elapsed_time, df_topic_data):
338
  """
339
- Generates a full HTML report containing all analysis results and
340
- visualizations, with CSS media queries for mobile responsiveness.
341
  """
342
- # 1. Generate Visualizations (Plotly HTML generation code remains the same,
343
- # ensuring bubble chart to_html includes config={'responsive': True})
344
- # ... (Plotly generation code for treemap_html, pie_html, bar_category_html, bar_freq_html, network_html) ...
345
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346
  # 1f. Topic Charts HTML
347
  topic_charts_html = '<h3>Topic Word Weights (Bubble Chart)</h3>'
348
  if df_topic_data is not None and not df_topic_data.empty:
349
  bubble_figure = create_topic_word_bubbles(df_topic_data)
350
  if bubble_figure:
351
- # IMPORTANT: Ensure config={'responsive': True} is here to make the plot resize
352
  topic_charts_html += f'<div class="chart-box">{bubble_figure.to_html(full_html=False, include_plotlyjs="cdn", config={"responsive": True})}</div>'
353
  else:
354
  topic_charts_html += '<p style="color: red;">Error: Topic modeling data was available but visualization failed.</p>'
355
  else:
356
- topic_charts_html += '<div class="chart-box" style="text-align: center; padding: 50px; background-color: #fff; border: 1px dashed #888888;">'
357
  topic_charts_html += '<p><strong>Topic Modeling requires more unique input.</strong></p>'
358
  topic_charts_html += '<p>Please enter text containing at least two unique entities to generate the Topic Bubble Chart.</p>'
359
  topic_charts_html += '</div>'
360
-
361
  # 2. Get Highlighted Text
362
  highlighted_text_html = highlight_entities(text_input, df).replace("div style", "div class='highlighted-text' style")
363
-
364
  # 3. Entity Tables (Pandas to HTML)
365
  entity_table_html = df[['text', 'label', 'score', 'start', 'end', 'category']].to_html(
366
  classes='table table-striped',
367
  index=False
368
  )
369
-
370
- # 4. Construct the Final HTML with Mobile CSS Fixes
371
  html_content = f"""<!DOCTYPE html><html lang="en"><head>
372
  <meta charset="UTF-8">
373
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
@@ -450,12 +478,11 @@ white-space: pre-wrap; margin-bottom: 20px; }}
450
  </div></body></html>
451
  """
452
  return html_content
453
-
454
-
455
 
456
 
457
 
458
 
 
459
  # --- Page Configuration and Styling (No Sidebar) ---
460
  st.set_page_config(layout="wide", page_title="NER & Topic Report App")
461
 
@@ -802,4 +829,6 @@ if st.session_state.show_results:
802
  file_name="extracted_entities.csv",
803
  mime="text/csv",
804
  type="secondary"
805
- )
 
 
 
333
  return csv_buffer
334
  # -----------------------------------
335
  # --- Existing App Functionality (HTML) ---
 
336
  def generate_html_report(df, text_input, elapsed_time, df_topic_data):
337
  """
338
+ Generates a full HTML report containing all analysis results and visualizations.
339
+ (Content omitted for brevity but assumed to be here).
340
  """
341
+ # 1. Generate Visualizations (Plotly HTML)
342
+ # 1a. Treemap
343
+ fig_treemap = px.treemap(
344
+ df,
345
+ path=[px.Constant("All Entities"), 'category', 'label', 'text'],
346
+ values='score',
347
+ color='category',
348
+ title="Entity Distribution by Category and Label",
349
+ color_discrete_sequence=px.colors.qualitative.Dark24
350
+ )
351
+ fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
352
+ treemap_html = fig_treemap.to_html(full_html=False, include_plotlyjs='cdn')
353
+ # 1b. Pie Chart
354
+ grouped_counts = df['category'].value_counts().reset_index()
355
+ grouped_counts.columns = ['Category', 'Count']
356
+ # Changed color_discrete_sequence from sequential.RdBu (which has reds) to sequential.Cividis
357
+ fig_pie = px.pie(grouped_counts, values='Count', names='Category',title='Distribution of Entities by Category',color_discrete_sequence=px.colors.sequential.Cividis)
358
+ fig_pie.update_layout(margin=dict(t=50, b=10))
359
+ pie_html = fig_pie.to_html(full_html=False, include_plotlyjs='cdn')
360
+ # 1c. Bar Chart (Category Count)
361
+ fig_bar_category = px.bar(grouped_counts, x='Category', y='Count',color='Category', title='Total Entities per Category',color_discrete_sequence=px.colors.qualitative.Pastel)
362
+ fig_bar_category.update_layout(xaxis={'categoryorder': 'total descending'},margin=dict(t=50, b=100))
363
+ bar_category_html = fig_bar_category.to_html(full_html=False,include_plotlyjs='cdn')
364
+ # 1d. Bar Chart (Most Frequent Entities)
365
+ word_counts = df['text'].value_counts().reset_index()
366
+ word_counts.columns = ['Entity', 'Count']
367
+ repeating_entities = word_counts[word_counts['Count'] > 1].head(10)
368
+ bar_freq_html = '<p>No entities appear more than once in the text for visualization.</p>'
369
+ if not repeating_entities.empty:
370
+ # Changed color_discrete_sequence from sequential.Plasma (which has pink/magenta) to sequential.Viridis
371
+ fig_bar_freq = px.bar(repeating_entities, x='Entity', y='Count',color='Entity', title='Top 10 Most Frequent Entities',color_discrete_sequence=px.colors.sequential.Viridis)
372
+ fig_bar_freq.update_layout(xaxis={'categoryorder': 'total descending'},margin=dict(t=50, b=100))
373
+ bar_freq_html = fig_bar_freq.to_html(full_html=False, include_plotlyjs='cdn')
374
+ # 1e. Network Graph HTML
375
+ network_fig = generate_network_graph(df, text_input)
376
+ network_html = network_fig.to_html(full_html=False, include_plotlyjs='cdn')
377
  # 1f. Topic Charts HTML
378
  topic_charts_html = '<h3>Topic Word Weights (Bubble Chart)</h3>'
379
  if df_topic_data is not None and not df_topic_data.empty:
380
  bubble_figure = create_topic_word_bubbles(df_topic_data)
381
  if bubble_figure:
382
+
383
  topic_charts_html += f'<div class="chart-box">{bubble_figure.to_html(full_html=False, include_plotlyjs="cdn", config={"responsive": True})}</div>'
384
  else:
385
  topic_charts_html += '<p style="color: red;">Error: Topic modeling data was available but visualization failed.</p>'
386
  else:
387
+ topic_charts_html += '<div class="chart-box" style="text-align: center; padding: 50px; background-color: #fff; border: 1px dashed #888888;">' # Changed border color
388
  topic_charts_html += '<p><strong>Topic Modeling requires more unique input.</strong></p>'
389
  topic_charts_html += '<p>Please enter text containing at least two unique entities to generate the Topic Bubble Chart.</p>'
390
  topic_charts_html += '</div>'
 
391
  # 2. Get Highlighted Text
392
  highlighted_text_html = highlight_entities(text_input, df).replace("div style", "div class='highlighted-text' style")
 
393
  # 3. Entity Tables (Pandas to HTML)
394
  entity_table_html = df[['text', 'label', 'score', 'start', 'end', 'category']].to_html(
395
  classes='table table-striped',
396
  index=False
397
  )
398
+ # 4. Construct the Final HTML
 
399
  html_content = f"""<!DOCTYPE html><html lang="en"><head>
400
  <meta charset="UTF-8">
401
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
 
478
  </div></body></html>
479
  """
480
  return html_content
 
 
481
 
482
 
483
 
484
 
485
+
486
  # --- Page Configuration and Styling (No Sidebar) ---
487
  st.set_page_config(layout="wide", page_title="NER & Topic Report App")
488
 
 
829
  file_name="extracted_entities.csv",
830
  mime="text/csv",
831
  type="secondary"
832
+ )
833
+
834
+