Spaces:
Running
Running
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +30 -43
src/streamlit_app.py
CHANGED
|
@@ -7,17 +7,13 @@ import io
|
|
| 7 |
import plotly.express as px
|
| 8 |
import zipfile
|
| 9 |
import json
|
|
|
|
| 10 |
from cryptography.fernet import Fernet
|
| 11 |
from streamlit_extras.stylable_container import stylable_container
|
| 12 |
from typing import Optional
|
| 13 |
from gliner import GLiNER
|
| 14 |
from comet_ml import Experiment
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
# --- Page Configuration and UI Elements ---
|
| 22 |
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
| 23 |
st.subheader("DataHarvest", divider="violet")
|
|
@@ -27,15 +23,13 @@ st.markdown(':rainbow[**Supported Languages: English**]')
|
|
| 27 |
expander = st.expander("**Important notes**")
|
| 28 |
expander.write("""**Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "money", "percent", "position"
|
| 29 |
|
| 30 |
-
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
| 31 |
-
|
| 32 |
-
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
|
| 33 |
|
| 34 |
-
**
|
| 35 |
|
| 36 |
-
**
|
| 37 |
|
| 38 |
-
For any errors or inquiries, please contact us at info@nlpblogs.com""")
|
| 39 |
|
| 40 |
with st.sidebar:
|
| 41 |
st.write("Use the following code to embed the DataHarvest web app on your website. Feel free to adjust the width and height values to fit your page.")
|
|
@@ -46,7 +40,7 @@ with st.sidebar:
|
|
| 46 |
width="850"
|
| 47 |
height="450"
|
| 48 |
></iframe>
|
| 49 |
-
|
| 50 |
'''
|
| 51 |
st.code(code, language="html")
|
| 52 |
st.text("")
|
|
@@ -60,7 +54,6 @@ COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
|
| 60 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
| 61 |
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
| 62 |
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
|
| 63 |
-
|
| 64 |
if not comet_initialized:
|
| 65 |
st.warning("Comet ML not initialized. Check environment variables.")
|
| 66 |
|
|
@@ -68,7 +61,6 @@ if not comet_initialized:
|
|
| 68 |
labels = ["person", "country", "city", "organization", "date", "time", "money", "percent", "position"]
|
| 69 |
|
| 70 |
# Corrected mapping dictionary
|
| 71 |
-
|
| 72 |
# Create a mapping dictionary for labels to categories
|
| 73 |
category_mapping = {
|
| 74 |
"People": ["person", "organization", "position"],
|
|
@@ -77,9 +69,6 @@ category_mapping = {
|
|
| 77 |
"Numbers": ["money", "percent"]
|
| 78 |
}
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
# --- Model Loading ---
|
| 84 |
@st.cache_resource
|
| 85 |
def load_ner_model():
|
|
@@ -89,6 +78,7 @@ def load_ner_model():
|
|
| 89 |
except Exception as e:
|
| 90 |
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
| 91 |
st.stop()
|
|
|
|
| 92 |
model = load_ner_model()
|
| 93 |
|
| 94 |
# Flatten the mapping to a single dictionary
|
|
@@ -101,8 +91,12 @@ def clear_text():
|
|
| 101 |
"""Clears the text area."""
|
| 102 |
st.session_state['my_text_area'] = ""
|
| 103 |
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
| 105 |
|
|
|
|
| 106 |
|
| 107 |
# --- Results Section ---
|
| 108 |
if st.button("Results"):
|
|
@@ -110,10 +104,12 @@ if st.button("Results"):
|
|
| 110 |
if not text.strip():
|
| 111 |
st.warning("Please enter some text to extract entities.")
|
| 112 |
else:
|
|
|
|
|
|
|
| 113 |
with st.spinner("Extracting entities...", show_time=True):
|
| 114 |
-
|
|
|
|
| 115 |
df = pd.DataFrame(entities)
|
| 116 |
-
|
| 117 |
if not df.empty:
|
| 118 |
df['category'] = df['label'].map(reverse_category_mapping)
|
| 119 |
if comet_initialized:
|
|
@@ -124,13 +120,13 @@ if st.button("Results"):
|
|
| 124 |
)
|
| 125 |
experiment.log_parameter("input_text", text)
|
| 126 |
experiment.log_table("predicted_entities", df)
|
| 127 |
-
|
| 128 |
st.subheader("Grouped Entities by Category", divider = "violet")
|
| 129 |
-
|
| 130 |
# Create tabs for each category
|
| 131 |
category_names = sorted(list(category_mapping.keys()))
|
| 132 |
category_tabs = st.tabs(category_names)
|
| 133 |
-
|
| 134 |
for i, category_name in enumerate(category_names):
|
| 135 |
with category_tabs[i]:
|
| 136 |
df_category_filtered = df[df['category'] == category_name]
|
|
@@ -139,8 +135,6 @@ if st.button("Results"):
|
|
| 139 |
else:
|
| 140 |
st.info(f"No entities found for the '{category_name}' category.")
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
with st.expander("See Glossary of tags"):
|
| 145 |
st.write('''
|
| 146 |
- **text**: ['entity extracted from your text data']
|
|
@@ -150,38 +144,33 @@ if st.button("Results"):
|
|
| 150 |
- **end**: ['index of the end of the corresponding entity']
|
| 151 |
''')
|
| 152 |
st.divider()
|
| 153 |
-
|
| 154 |
# Tree map
|
| 155 |
st.subheader("Tree map", divider = "violet")
|
| 156 |
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
|
| 157 |
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
| 158 |
st.plotly_chart(fig_treemap)
|
| 159 |
-
|
| 160 |
# Pie and Bar charts
|
| 161 |
grouped_counts = df['category'].value_counts().reset_index()
|
| 162 |
grouped_counts.columns = ['category', 'count']
|
| 163 |
col1, col2 = st.columns(2)
|
| 164 |
-
|
| 165 |
with col1:
|
| 166 |
st.subheader("Pie chart", divider = "violet")
|
| 167 |
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
| 168 |
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
| 169 |
fig_pie.update_layout(
|
| 170 |
-
|
| 171 |
-
)
|
| 172 |
st.plotly_chart(fig_pie)
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
|
| 177 |
with col2:
|
| 178 |
st.subheader("Bar chart", divider = "violet")
|
| 179 |
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
|
| 180 |
fig_bar.update_layout( # Changed from fig_pie to fig_bar
|
| 181 |
-
|
| 182 |
-
)
|
| 183 |
st.plotly_chart(fig_bar)
|
| 184 |
-
|
| 185 |
# Most Frequent Entities
|
| 186 |
st.subheader("Most Frequent Entities", divider="violet")
|
| 187 |
word_counts = df['text'].value_counts().reset_index()
|
|
@@ -195,10 +184,10 @@ if st.button("Results"):
|
|
| 195 |
st.plotly_chart(fig_repeating_bar)
|
| 196 |
else:
|
| 197 |
st.warning("No entities were found that occur more than once.")
|
| 198 |
-
|
| 199 |
# Download Section
|
| 200 |
st.divider()
|
| 201 |
-
|
| 202 |
dfa = pd.DataFrame(
|
| 203 |
data={
|
| 204 |
'Column Name': ['text', 'label', 'score', 'start', 'end'],
|
|
@@ -208,7 +197,6 @@ if st.button("Results"):
|
|
| 208 |
'accuracy score; how accurately a tag has been assigned to a given entity',
|
| 209 |
'index of the start of the corresponding entity',
|
| 210 |
'index of the end of the corresponding entity',
|
| 211 |
-
|
| 212 |
]
|
| 213 |
}
|
| 214 |
)
|
|
@@ -216,7 +204,7 @@ if st.button("Results"):
|
|
| 216 |
with zipfile.ZipFile(buf, "w") as myzip:
|
| 217 |
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
| 218 |
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
| 219 |
-
|
| 220 |
with stylable_container(
|
| 221 |
key="download_button",
|
| 222 |
css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
|
|
@@ -227,14 +215,13 @@ if st.button("Results"):
|
|
| 227 |
file_name="nlpblogs_results.zip",
|
| 228 |
mime="application/zip",
|
| 229 |
)
|
| 230 |
-
|
| 231 |
if comet_initialized:
|
| 232 |
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
|
| 233 |
experiment.end()
|
| 234 |
else: # If df is empty
|
| 235 |
st.warning("No entities were found in the provided text.")
|
| 236 |
-
|
| 237 |
-
end_time = time.time()
|
| 238 |
elapsed_time = end_time - start_time
|
| 239 |
st.text("")
|
| 240 |
st.text("")
|
|
|
|
| 7 |
import plotly.express as px
|
| 8 |
import zipfile
|
| 9 |
import json
|
| 10 |
+
import string
|
| 11 |
from cryptography.fernet import Fernet
|
| 12 |
from streamlit_extras.stylable_container import stylable_container
|
| 13 |
from typing import Optional
|
| 14 |
from gliner import GLiNER
|
| 15 |
from comet_ml import Experiment
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# --- Page Configuration and UI Elements ---
|
| 18 |
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
| 19 |
st.subheader("DataHarvest", divider="violet")
|
|
|
|
| 23 |
expander = st.expander("**Important notes**")
|
| 24 |
expander.write("""**Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "money", "percent", "position"
|
| 25 |
|
| 26 |
+
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
|
| 29 |
|
| 30 |
+
**Usage Limits:** You can request results unlimited times for one (1) month.
|
| 31 |
|
| 32 |
+
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. For any errors or inquiries, please contact us at info@nlpblogs.com""")
|
| 33 |
|
| 34 |
with st.sidebar:
|
| 35 |
st.write("Use the following code to embed the DataHarvest web app on your website. Feel free to adjust the width and height values to fit your page.")
|
|
|
|
| 40 |
width="850"
|
| 41 |
height="450"
|
| 42 |
></iframe>
|
| 43 |
+
|
| 44 |
'''
|
| 45 |
st.code(code, language="html")
|
| 46 |
st.text("")
|
|
|
|
| 54 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
| 55 |
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
| 56 |
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
|
|
|
|
| 57 |
if not comet_initialized:
|
| 58 |
st.warning("Comet ML not initialized. Check environment variables.")
|
| 59 |
|
|
|
|
| 61 |
labels = ["person", "country", "city", "organization", "date", "time", "money", "percent", "position"]
|
| 62 |
|
| 63 |
# Corrected mapping dictionary
|
|
|
|
| 64 |
# Create a mapping dictionary for labels to categories
|
| 65 |
category_mapping = {
|
| 66 |
"People": ["person", "organization", "position"],
|
|
|
|
| 69 |
"Numbers": ["money", "percent"]
|
| 70 |
}
|
| 71 |
|
|
|
|
|
|
|
|
|
|
| 72 |
# --- Model Loading ---
|
| 73 |
@st.cache_resource
|
| 74 |
def load_ner_model():
|
|
|
|
| 78 |
except Exception as e:
|
| 79 |
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
| 80 |
st.stop()
|
| 81 |
+
|
| 82 |
model = load_ner_model()
|
| 83 |
|
| 84 |
# Flatten the mapping to a single dictionary
|
|
|
|
| 91 |
"""Clears the text area."""
|
| 92 |
st.session_state['my_text_area'] = ""
|
| 93 |
|
| 94 |
+
def remove_punctuation(text):
|
| 95 |
+
"""Removes punctuation from a string."""
|
| 96 |
+
translator = str.maketrans('', '', string.punctuation)
|
| 97 |
+
return text.translate(translator)
|
| 98 |
|
| 99 |
+
st.button("Clear text", on_click=clear_text)
|
| 100 |
|
| 101 |
# --- Results Section ---
|
| 102 |
if st.button("Results"):
|
|
|
|
| 104 |
if not text.strip():
|
| 105 |
st.warning("Please enter some text to extract entities.")
|
| 106 |
else:
|
| 107 |
+
# Call the new function to remove punctuation from the input text
|
| 108 |
+
cleaned_text = remove_punctuation(text)
|
| 109 |
with st.spinner("Extracting entities...", show_time=True):
|
| 110 |
+
# Use the cleaned text for prediction
|
| 111 |
+
entities = model.predict_entities(cleaned_text, labels)
|
| 112 |
df = pd.DataFrame(entities)
|
|
|
|
| 113 |
if not df.empty:
|
| 114 |
df['category'] = df['label'].map(reverse_category_mapping)
|
| 115 |
if comet_initialized:
|
|
|
|
| 120 |
)
|
| 121 |
experiment.log_parameter("input_text", text)
|
| 122 |
experiment.log_table("predicted_entities", df)
|
| 123 |
+
|
| 124 |
st.subheader("Grouped Entities by Category", divider = "violet")
|
| 125 |
+
|
| 126 |
# Create tabs for each category
|
| 127 |
category_names = sorted(list(category_mapping.keys()))
|
| 128 |
category_tabs = st.tabs(category_names)
|
| 129 |
+
|
| 130 |
for i, category_name in enumerate(category_names):
|
| 131 |
with category_tabs[i]:
|
| 132 |
df_category_filtered = df[df['category'] == category_name]
|
|
|
|
| 135 |
else:
|
| 136 |
st.info(f"No entities found for the '{category_name}' category.")
|
| 137 |
|
|
|
|
|
|
|
| 138 |
with st.expander("See Glossary of tags"):
|
| 139 |
st.write('''
|
| 140 |
- **text**: ['entity extracted from your text data']
|
|
|
|
| 144 |
- **end**: ['index of the end of the corresponding entity']
|
| 145 |
''')
|
| 146 |
st.divider()
|
| 147 |
+
|
| 148 |
# Tree map
|
| 149 |
st.subheader("Tree map", divider = "violet")
|
| 150 |
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
|
| 151 |
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
| 152 |
st.plotly_chart(fig_treemap)
|
| 153 |
+
|
| 154 |
# Pie and Bar charts
|
| 155 |
grouped_counts = df['category'].value_counts().reset_index()
|
| 156 |
grouped_counts.columns = ['category', 'count']
|
| 157 |
col1, col2 = st.columns(2)
|
| 158 |
+
|
| 159 |
with col1:
|
| 160 |
st.subheader("Pie chart", divider = "violet")
|
| 161 |
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
| 162 |
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
| 163 |
fig_pie.update_layout(
|
| 164 |
+
)
|
|
|
|
| 165 |
st.plotly_chart(fig_pie)
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
with col2:
|
| 168 |
st.subheader("Bar chart", divider = "violet")
|
| 169 |
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
|
| 170 |
fig_bar.update_layout( # Changed from fig_pie to fig_bar
|
| 171 |
+
)
|
|
|
|
| 172 |
st.plotly_chart(fig_bar)
|
| 173 |
+
|
| 174 |
# Most Frequent Entities
|
| 175 |
st.subheader("Most Frequent Entities", divider="violet")
|
| 176 |
word_counts = df['text'].value_counts().reset_index()
|
|
|
|
| 184 |
st.plotly_chart(fig_repeating_bar)
|
| 185 |
else:
|
| 186 |
st.warning("No entities were found that occur more than once.")
|
| 187 |
+
|
| 188 |
# Download Section
|
| 189 |
st.divider()
|
| 190 |
+
|
| 191 |
dfa = pd.DataFrame(
|
| 192 |
data={
|
| 193 |
'Column Name': ['text', 'label', 'score', 'start', 'end'],
|
|
|
|
| 197 |
'accuracy score; how accurately a tag has been assigned to a given entity',
|
| 198 |
'index of the start of the corresponding entity',
|
| 199 |
'index of the end of the corresponding entity',
|
|
|
|
| 200 |
]
|
| 201 |
}
|
| 202 |
)
|
|
|
|
| 204 |
with zipfile.ZipFile(buf, "w") as myzip:
|
| 205 |
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
| 206 |
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
| 207 |
+
|
| 208 |
with stylable_container(
|
| 209 |
key="download_button",
|
| 210 |
css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
|
|
|
|
| 215 |
file_name="nlpblogs_results.zip",
|
| 216 |
mime="application/zip",
|
| 217 |
)
|
| 218 |
+
|
| 219 |
if comet_initialized:
|
| 220 |
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
|
| 221 |
experiment.end()
|
| 222 |
else: # If df is empty
|
| 223 |
st.warning("No entities were found in the provided text.")
|
| 224 |
+
end_time = time.time()
|
|
|
|
| 225 |
elapsed_time = end_time - start_time
|
| 226 |
st.text("")
|
| 227 |
st.text("")
|