Spaces:
Running
Running
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +620 -227
src/streamlit_app.py
CHANGED
|
@@ -2,263 +2,656 @@ import os
|
|
| 2 |
os.environ['HF_HOME'] = '/tmp'
|
| 3 |
import time
|
| 4 |
import streamlit as st
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
import io
|
| 7 |
import plotly.express as px
|
| 8 |
-
import
|
|
|
|
|
|
|
| 9 |
import string
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
from gliner import GLiNER
|
| 14 |
-
from
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
| 20 |
-
st.
|
| 21 |
-
|
| 22 |
-
expander = st.expander("**Important notes**")
|
| 23 |
-
expander.write("""**Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"
|
| 24 |
|
| 25 |
-
**Results:** Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
| 26 |
|
| 27 |
-
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
|
| 28 |
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
st.markdown("For any errors or inquiries, please contact us at [info@nlpblogs.com](mailto:info@nlpblogs.com)")
|
| 34 |
|
| 35 |
-
|
| 36 |
-
st.write("Use the following code to embed the DataHarvest web app on your website. Feel free to adjust the width and height values to fit your page.")
|
| 37 |
-
code = '''
|
| 38 |
-
<iframe
|
| 39 |
-
src="https://aiecosystem-dataharvest.hf.space"
|
| 40 |
-
frameborder="0"
|
| 41 |
-
width="850"
|
| 42 |
-
height="450"
|
| 43 |
-
></iframe>
|
| 44 |
-
|
| 45 |
-
'''
|
| 46 |
-
st.code(code, language="html")
|
| 47 |
-
st.text("")
|
| 48 |
-
st.text("")
|
| 49 |
-
|
| 50 |
-
st.subheader("🚀 Ready to build your own AI Web App?", divider="violet")
|
| 51 |
-
st.link_button("AI Web App Builder", "https://nlpblogs.com/build-your-named-entity-recognition-app/", type="primary")
|
| 52 |
-
|
| 53 |
-
# --- Comet ML Setup ---
|
| 54 |
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
| 55 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
| 56 |
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
| 57 |
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
|
| 58 |
-
if not comet_initialized:
|
| 59 |
-
st.warning("Comet ML not initialized. Check environment variables.")
|
| 60 |
-
print("Warning: Comet ML environment variables are not set. Logging will be disabled.")
|
| 61 |
-
|
| 62 |
-
# --- Label Definitions ---
|
| 63 |
-
labels = ["person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"]
|
| 64 |
-
category_mapping = {
|
| 65 |
-
"People": ["person", "organization", "position"],
|
| 66 |
-
"Locations": ["country", "city"],
|
| 67 |
-
"Time": ["date", "time"],
|
| 68 |
-
"Numbers": ["money", "cardinal"]
|
| 69 |
-
}
|
| 70 |
-
|
| 71 |
# --- Model Loading ---
|
| 72 |
@st.cache_resource
|
| 73 |
def load_ner_model():
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
model = load_ner_model()
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
if 'show_results' not in st.session_state:
|
| 85 |
-
|
| 86 |
if 'last_text' not in st.session_state:
|
| 87 |
-
|
| 88 |
if 'results_df' not in st.session_state:
|
| 89 |
-
|
| 90 |
if 'elapsed_time' not in st.session_state:
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
# --- Text Input and Clear Button ---
|
| 94 |
-
word_limit =
|
| 95 |
-
text = st.text_area(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
word_count = len(text.split())
|
| 97 |
st.markdown(f"**Word count:** {word_count}/{word_limit}")
|
| 98 |
-
|
| 99 |
-
def clear_text():
|
| 100 |
-
"""Clears the text area and hides results."""
|
| 101 |
-
st.session_state['my_text_area'] = ""
|
| 102 |
-
st.session_state.show_results = False
|
| 103 |
-
st.session_state.last_text = ""
|
| 104 |
-
st.session_state.results_df = pd.DataFrame()
|
| 105 |
-
st.session_state.elapsed_time = 0.0
|
| 106 |
-
|
| 107 |
st.button("Clear text", on_click=clear_text)
|
| 108 |
-
|
| 109 |
-
# --- Post-processing function to remove trailing punctuation ---
|
| 110 |
-
def remove_trailing_punctuation(text_string):
|
| 111 |
-
"""
|
| 112 |
-
Removes trailing punctuation from a string.
|
| 113 |
-
|
| 114 |
-
Args:
|
| 115 |
-
text_string (str): The input string.
|
| 116 |
-
|
| 117 |
-
Returns:
|
| 118 |
-
str: The string with trailing punctuation removed.
|
| 119 |
-
"""
|
| 120 |
-
return text_string.rstrip(string.punctuation)
|
| 121 |
-
|
| 122 |
-
# --- Results Section ---
|
| 123 |
if st.button("Results"):
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
-
#
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
for i, category_name in enumerate(category_names):
|
| 172 |
-
with category_tabs[i]:
|
| 173 |
-
df_category_filtered = df[df['category'] == category_name]
|
| 174 |
-
if not df_category_filtered.empty:
|
| 175 |
-
st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
|
| 176 |
-
else:
|
| 177 |
-
st.info(f"No entities found for the '{category_name}' category.")
|
| 178 |
-
|
| 179 |
-
with st.expander("See Glossary of tags"):
|
| 180 |
-
st.write('''
|
| 181 |
-
- **start**: ['index of the start of the corresponding entity']
|
| 182 |
-
- **end**: ['index of the end of the corresponding entity']
|
| 183 |
-
- **text**: ['entity extracted from your text data']
|
| 184 |
-
- **label**: ['label (tag) assigned to a given extracted entity']
|
| 185 |
-
- **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
|
| 186 |
-
|
| 187 |
-
''')
|
| 188 |
-
|
| 189 |
-
st.divider()
|
| 190 |
-
# Tree map
|
| 191 |
-
st.subheader("Tree map", divider="violet")
|
| 192 |
-
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
|
| 193 |
-
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
| 194 |
-
expander = st.expander("**Download**")
|
| 195 |
-
expander.write("""You can easily download the tree map by hovering over it. Look for the download icon that appears in the top right corner.
|
| 196 |
-
""")
|
| 197 |
-
st.plotly_chart(fig_treemap)
|
| 198 |
-
|
| 199 |
-
# Pie and Bar charts
|
| 200 |
-
grouped_counts = df['category'].value_counts().reset_index()
|
| 201 |
-
grouped_counts.columns = ['category', 'count']
|
| 202 |
-
col1, col2 = st.columns(2)
|
| 203 |
-
|
| 204 |
-
with col1:
|
| 205 |
-
st.subheader("Pie chart", divider="violet")
|
| 206 |
-
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
| 207 |
-
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
| 208 |
-
expander = st.expander("**Download**")
|
| 209 |
-
expander.write("""You can easily download the pie chart by hovering over it. Look for the download icon that appears in the top right corner.
|
| 210 |
-
""")
|
| 211 |
-
st.plotly_chart(fig_pie)
|
| 212 |
-
|
| 213 |
-
with col2:
|
| 214 |
-
st.subheader("Bar chart", divider="violet")
|
| 215 |
-
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
|
| 216 |
-
expander = st.expander("**Download**")
|
| 217 |
-
expander.write("""You can easily download the bar chart by hovering over it. Look for the download icon that appears in the top right corner.
|
| 218 |
-
""")
|
| 219 |
-
st.plotly_chart(fig_bar)
|
| 220 |
-
|
| 221 |
-
# Most Frequent Entities
|
| 222 |
-
st.subheader("Most Frequent Entities", divider="violet")
|
| 223 |
-
word_counts = df['text'].value_counts().reset_index()
|
| 224 |
-
word_counts.columns = ['Entity', 'Count']
|
| 225 |
-
repeating_entities = word_counts[word_counts['Count'] > 1]
|
| 226 |
-
|
| 227 |
-
if not repeating_entities.empty:
|
| 228 |
-
st.dataframe(repeating_entities, use_container_width=True)
|
| 229 |
-
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
|
| 230 |
-
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'})
|
| 231 |
-
expander = st.expander("**Download**")
|
| 232 |
-
expander.write("""You can easily download the bar chart by hovering over it. Look for the download icon that appears in the top right corner.
|
| 233 |
-
""")
|
| 234 |
-
st.plotly_chart(fig_repeating_bar)
|
| 235 |
-
else:
|
| 236 |
-
st.warning("No entities were found that occur more than once.")
|
| 237 |
-
|
| 238 |
-
# Download Section
|
| 239 |
-
st.divider()
|
| 240 |
-
dfa = pd.DataFrame(data={'Column Name': ['start', 'end', 'text', 'label', 'score'],
|
| 241 |
-
'Description': ['index of the start of the corresponding entity', 'index of the end of the corresponding entity', 'entity extracted from your text data', 'label (tag) assigned to a given extracted entity', 'accuracy score; how accurately a tag has been assigned to a given entity']})
|
| 242 |
-
|
| 243 |
-
buf = io.BytesIO()
|
| 244 |
-
with zipfile.ZipFile(buf, "w") as myzip:
|
| 245 |
-
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
| 246 |
-
myzip.writestr("Most Frequent Entities.csv", repeating_entities.to_csv(index=False))
|
| 247 |
-
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
| 248 |
-
|
| 249 |
-
with stylable_container(
|
| 250 |
-
key="download_button",
|
| 251 |
-
css_styles="""button { background-color: #8A2BE2; border: 1px solid black; padding: 5px; color: white; }""",
|
| 252 |
-
):
|
| 253 |
-
st.download_button(
|
| 254 |
-
label="Download results and glossary (zip)",
|
| 255 |
-
data=buf.getvalue(),
|
| 256 |
-
file_name="nlpblogs_results.zip",
|
| 257 |
-
mime="application/zip"
|
| 258 |
-
)
|
| 259 |
-
st.text("")
|
| 260 |
-
st.text("")
|
| 261 |
-
else:
|
| 262 |
-
st.warning("No entities were found in the provided text.")
|
| 263 |
|
| 264 |
-
|
|
|
|
| 2 |
os.environ['HF_HOME'] = '/tmp'
|
| 3 |
import time
|
| 4 |
import streamlit as st
|
| 5 |
+
import streamlit.components.v1 as components
|
| 6 |
import pandas as pd
|
| 7 |
import io
|
| 8 |
import plotly.express as px
|
| 9 |
+
import plotly.graph_objects as go
|
| 10 |
+
import numpy as np
|
| 11 |
+
import re
|
| 12 |
import string
|
| 13 |
+
import json
|
| 14 |
+
# --- PPTX Imports ---
|
| 15 |
+
from io import BytesIO
|
| 16 |
+
from pptx import Presentation
|
| 17 |
+
from pptx.util import Inches, Pt
|
| 18 |
+
from pptx.enum.text import MSO_ANCHOR, MSO_AUTO_SIZE
|
| 19 |
+
import plotly.io as pio # Required for image export
|
| 20 |
+
# ---------------------------
|
| 21 |
+
# --- Stable Scikit-learn LDA Imports ---
|
| 22 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 23 |
+
from sklearn.decomposition import LatentDirichletAllocation
|
| 24 |
+
# ------------------------------
|
| 25 |
from gliner import GLiNER
|
| 26 |
+
from streamlit_extras.stylable_container import stylable_container
|
| 27 |
+
# Using a try/except for comet_ml import
|
| 28 |
+
try:
|
| 29 |
+
from comet_ml import Experiment
|
| 30 |
+
except ImportError:
|
| 31 |
+
class Experiment:
|
| 32 |
+
def __init__(self, **kwargs): pass
|
| 33 |
+
def log_parameter(self, *args): pass
|
| 34 |
+
def log_table(self, *args): pass
|
| 35 |
+
def end(self): pass
|
| 36 |
+
# --- Model Home Directory (Fix for deployment environments) ---
|
| 37 |
+
# Set HF_HOME environment variable to a writable path
|
| 38 |
+
os.environ['HF_HOME'] = '/tmp'
|
| 39 |
+
# --- Color Map for Highlighting and Network Graph Nodes ---
|
| 40 |
+
entity_color_map = {
|
| 41 |
+
"person": "#10b981",
|
| 42 |
+
"country": "#3b82f6",
|
| 43 |
+
"city": "#4ade80",
|
| 44 |
+
"organization": "#f59e0b",
|
| 45 |
+
"date": "#8b5cf6",
|
| 46 |
+
"time": "#ec4899",
|
| 47 |
+
"cardinal": "#06b6d4",
|
| 48 |
+
"money": "#f43f5e",
|
| 49 |
+
"position": "#a855f7",
|
| 50 |
+
}
|
| 51 |
+
# --- Label Definitions and Category Mapping (Used by the App and PPTX) ---
|
| 52 |
+
labels = list(entity_color_map.keys())
|
| 53 |
+
category_mapping = {
|
| 54 |
+
"People": ["person", "organization", "position"],
|
| 55 |
+
"Locations": ["country", "city"],
|
| 56 |
+
"Time": ["date", "time"],
|
| 57 |
+
"Numbers": ["money", "cardinal"]}
|
| 58 |
+
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
|
| 59 |
+
# --- Utility Functions for Analysis and Plotly ---
|
| 60 |
+
def extract_label(node_name):
|
| 61 |
+
"""Extracts the label from a node string like 'Text (Label)'."""
|
| 62 |
+
match = re.search(r'\(([^)]+)\)$', node_name)
|
| 63 |
+
return match.group(1) if match else "Unknown"
|
| 64 |
+
def remove_trailing_punctuation(text_string):
|
| 65 |
+
"""Removes trailing punctuation from a string."""
|
| 66 |
+
return text_string.rstrip(string.punctuation)
|
| 67 |
+
def highlight_entities(text, df_entities):
|
| 68 |
+
"""Generates HTML to display text with entities highlighted and colored."""
|
| 69 |
+
if df_entities.empty:
|
| 70 |
+
return text
|
| 71 |
+
# Sort entities by start index descending to insert highlights without affecting subsequent indices
|
| 72 |
+
entities = df_entities.sort_values(by='start', ascending=False).to_dict('records')
|
| 73 |
+
highlighted_text = text
|
| 74 |
+
for entity in entities:
|
| 75 |
+
start = entity['start']
|
| 76 |
+
end = entity['end']
|
| 77 |
+
label = entity['label']
|
| 78 |
+
entity_text = entity['text']
|
| 79 |
+
color = entity_color_map.get(label, '#000000')
|
| 80 |
+
# Create a span with background color and tooltip
|
| 81 |
+
highlight_html = f'<span style="background-color: {color}; color: white; padding: 2px 4px; border-radius: 3px; cursor: help;" title="{label}">{entity_text}</span>'
|
| 82 |
+
# Replace the original text segment with the highlighted HTML
|
| 83 |
+
highlighted_text = highlighted_text[:start] + highlight_html + highlighted_text[end:]
|
| 84 |
+
# Use a div to mimic the Streamlit input box style for the report
|
| 85 |
+
return f'<div style="border: 1px solid #888888; padding: 15px; border-radius: 5px; background-color: #ffffff; font-family: monospace; white-space: pre-wrap; margin-bottom: 20px;">{highlighted_text}</div>'
|
| 86 |
+
def perform_topic_modeling(df_entities, num_topics=2, num_top_words=10):
|
| 87 |
+
"""
|
| 88 |
+
Performs basic Topic Modeling using LDA on the extracted entities
|
| 89 |
+
and returns structured data for visualization.
|
| 90 |
+
"""
|
| 91 |
+
documents = df_entities['text'].unique().tolist()
|
| 92 |
+
if len(documents) < 2:
|
| 93 |
+
return None
|
| 94 |
+
N = min(num_top_words, len(documents))
|
| 95 |
+
try:
|
| 96 |
+
tfidf_vectorizer = TfidfVectorizer(
|
| 97 |
+
max_df=0.95,
|
| 98 |
+
min_df=1,
|
| 99 |
+
stop_words='english'
|
| 100 |
+
)
|
| 101 |
+
tfidf = tfidf_vectorizer.fit_transform(documents)
|
| 102 |
+
tfidf_feature_names = tfidf_vectorizer.get_feature_names_out()
|
| 103 |
+
lda = LatentDirichletAllocation(
|
| 104 |
+
n_components=num_topics, max_iter=5, learning_method='online',random_state=42, n_jobs=-1
|
| 105 |
+
)
|
| 106 |
+
lda.fit(tfidf)
|
| 107 |
+
topic_data_list = []
|
| 108 |
+
for topic_idx, topic in enumerate(lda.components_):
|
| 109 |
+
top_words_indices = topic.argsort()[:-N - 1:-1]
|
| 110 |
+
top_words = [tfidf_feature_names[i] for i in top_words_indices]
|
| 111 |
+
word_weights = [topic[i] for i in top_words_indices]
|
| 112 |
+
for word, weight in zip(top_words, word_weights):
|
| 113 |
+
topic_data_list.append({
|
| 114 |
+
'Topic_ID': f'Topic #{topic_idx + 1}',
|
| 115 |
+
'Word': word,
|
| 116 |
+
'Weight': weight,
|
| 117 |
+
})
|
| 118 |
+
return pd.DataFrame(topic_data_list)
|
| 119 |
+
except Exception as e:
|
| 120 |
+
st.error(f"Topic modeling failed: {e}")
|
| 121 |
+
return None
|
| 122 |
+
def create_topic_word_bubbles(df_topic_data):
|
| 123 |
+
"""Generates a Plotly Bubble Chart for top words across all topics."""
|
| 124 |
+
# Renaming columns to match the output of perform_topic_modeling
|
| 125 |
+
df_topic_data = df_topic_data.rename(columns={'Topic_ID': 'topic', 'Word': 'word', 'Weight': 'weight'})
|
| 126 |
+
df_topic_data['x_pos'] = df_topic_data.index # Use index for x-position in the app
|
| 127 |
+
if df_topic_data.empty:
|
| 128 |
+
return None
|
| 129 |
+
fig = px.scatter(
|
| 130 |
+
df_topic_data,
|
| 131 |
+
x='x_pos',
|
| 132 |
+
y='weight',
|
| 133 |
+
size='weight',
|
| 134 |
+
color='topic',
|
| 135 |
+
hover_name='word',
|
| 136 |
+
size_max=80,
|
| 137 |
+
title='Topic Word Weights (Bubble Chart)',
|
| 138 |
+
color_discrete_sequence=px.colors.qualitative.Bold,
|
| 139 |
+
labels={
|
| 140 |
+
'x_pos': 'Entity/Word Index',
|
| 141 |
+
'weight': 'Word Weight',
|
| 142 |
+
'topic': 'Topic ID'
|
| 143 |
+
},
|
| 144 |
+
custom_data=['word', 'weight', 'topic']
|
| 145 |
+
)
|
| 146 |
+
fig.update_layout(
|
| 147 |
+
xaxis_title="Entity/Word (Bubble size = Word Weight)",
|
| 148 |
+
yaxis_title="Word Weight",
|
| 149 |
+
xaxis={'tickangle': -45, 'showgrid': False},
|
| 150 |
+
yaxis={'showgrid': True},
|
| 151 |
+
showlegend=True,
|
| 152 |
+
plot_bgcolor='#f9f9f9', # Changed from pink
|
| 153 |
+
paper_bgcolor='#f9f9f9', # Changed from pink
|
| 154 |
+
height=600,
|
| 155 |
+
margin=dict(t=50, b=100, l=50, r=10),
|
| 156 |
+
)
|
| 157 |
+
fig.update_traces(hovertemplate='<b>%{customdata[0]}</b><br>Weight: %{customdata[1]:.3f}<extra></extra>', marker=dict(line=dict(width=1, color='DarkSlateGrey')))
|
| 158 |
+
return fig
|
| 159 |
+
def generate_network_graph(df, raw_text):
|
| 160 |
+
"""
|
| 161 |
+
Generates a network graph visualization (Node Plot) with edges
|
| 162 |
+
based on entity co-occurrence in sentences. (Content omitted for brevity but assumed to be here).
|
| 163 |
+
"""
|
| 164 |
+
# Using the existing generate_network_graph logic from previous context...
|
| 165 |
+
entity_counts = df['text'].value_counts().reset_index()
|
| 166 |
+
entity_counts.columns = ['text', 'frequency']
|
| 167 |
+
unique_entities = df.drop_duplicates(subset=['text', 'label']).merge(entity_counts, on='text')
|
| 168 |
+
if unique_entities.shape[0] < 2:
|
| 169 |
+
return go.Figure().update_layout(title="Not enough unique entities for a meaningful graph.")
|
| 170 |
+
num_nodes = len(unique_entities)
|
| 171 |
+
thetas = np.linspace(0, 2 * np.pi, num_nodes, endpoint=False)
|
| 172 |
+
radius = 10
|
| 173 |
+
unique_entities['x'] = radius * np.cos(thetas) + np.random.normal(0, 0.5, num_nodes)
|
| 174 |
+
unique_entities['y'] = radius * np.sin(thetas) + np.random.normal(0, 0.5, num_nodes)
|
| 175 |
+
pos_map = unique_entities.set_index('text')[['x', 'y']].to_dict('index')
|
| 176 |
+
edges = set()
|
| 177 |
+
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|\!)\s', raw_text)
|
| 178 |
+
for sentence in sentences:
|
| 179 |
+
entities_in_sentence = []
|
| 180 |
+
for entity_text in unique_entities['text'].unique():
|
| 181 |
+
if entity_text.lower() in sentence.lower():
|
| 182 |
+
entities_in_sentence.append(entity_text)
|
| 183 |
+
unique_entities_in_sentence = list(set(entities_in_sentence))
|
| 184 |
+
for i in range(len(unique_entities_in_sentence)):
|
| 185 |
+
for j in range(i + 1, len(unique_entities_in_sentence)):
|
| 186 |
+
node1 = unique_entities_in_sentence[i]
|
| 187 |
+
node2 = unique_entities_in_sentence[j]
|
| 188 |
+
edge_tuple = tuple(sorted((node1, node2)))
|
| 189 |
+
edges.add(edge_tuple)
|
| 190 |
+
edge_x = []
|
| 191 |
+
edge_y = []
|
| 192 |
+
for edge in edges:
|
| 193 |
+
n1, n2 = edge
|
| 194 |
+
if n1 in pos_map and n2 in pos_map:
|
| 195 |
+
edge_x.extend([pos_map[n1]['x'], pos_map[n2]['x'], None])
|
| 196 |
+
edge_y.extend([pos_map[n1]['y'], pos_map[n2]['y'], None])
|
| 197 |
+
fig = go.Figure()
|
| 198 |
+
edge_trace = go.Scatter(
|
| 199 |
+
x=edge_x, y=edge_y,
|
| 200 |
+
line=dict(width=0.5, color='#888'),
|
| 201 |
+
hoverinfo='none',
|
| 202 |
+
mode='lines',
|
| 203 |
+
name='Co-occurrence Edges',
|
| 204 |
+
showlegend=False
|
| 205 |
+
)
|
| 206 |
+
fig.add_trace(edge_trace)
|
| 207 |
+
fig.add_trace(go.Scatter(
|
| 208 |
+
x=unique_entities['x'],
|
| 209 |
+
y=unique_entities['y'],
|
| 210 |
+
mode='markers+text',
|
| 211 |
+
name='Entities',
|
| 212 |
+
text=unique_entities['text'],
|
| 213 |
+
textposition="top center",
|
| 214 |
+
showlegend=False,
|
| 215 |
+
marker=dict(
|
| 216 |
+
size=unique_entities['frequency'] * 5 + 10,
|
| 217 |
+
color=[entity_color_map.get(label, '#cccccc') for label in unique_entities['label']],
|
| 218 |
+
line_width=1,
|
| 219 |
+
line_color='black',
|
| 220 |
+
opacity=0.9
|
| 221 |
+
),
|
| 222 |
+
textfont=dict(size=10),
|
| 223 |
+
customdata=unique_entities[['label', 'score', 'frequency']],
|
| 224 |
+
hovertemplate=(
|
| 225 |
+
"<b>%{text}</b><br>" +
|
| 226 |
+
"Label: %{customdata[0]}<br>" +
|
| 227 |
+
"Score: %{customdata[1]:.2f}<br>" +
|
| 228 |
+
"Frequency: %{customdata[2]}<extra></extra>"
|
| 229 |
+
)
|
| 230 |
+
))
|
| 231 |
+
legend_traces = []
|
| 232 |
+
seen_labels = set()
|
| 233 |
+
for index, row in unique_entities.iterrows():
|
| 234 |
+
label = row['label']
|
| 235 |
+
if label not in seen_labels:
|
| 236 |
+
seen_labels.add(label)
|
| 237 |
+
color = entity_color_map.get(label, '#cccccc')
|
| 238 |
+
legend_traces.append(go.Scatter(
|
| 239 |
+
x=[None], y=[None], mode='markers', marker=dict(size=10, color=color), name=f"{label.capitalize()}", showlegend=True
|
| 240 |
+
))
|
| 241 |
+
for trace in legend_traces:
|
| 242 |
+
fig.add_trace(trace)
|
| 243 |
+
fig.update_layout(
|
| 244 |
+
title='Entity Co-occurrence Network (Edges = Same Sentence)',
|
| 245 |
+
showlegend=True,
|
| 246 |
+
hovermode='closest',
|
| 247 |
+
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False, range=[-15, 15]),
|
| 248 |
+
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False, range=[-15, 15]),
|
| 249 |
+
plot_bgcolor='#f9f9f9',
|
| 250 |
+
paper_bgcolor='#f9f9f9',
|
| 251 |
+
margin=dict(t=50, b=10, l=10, r=10),
|
| 252 |
+
height=600
|
| 253 |
+
)
|
| 254 |
+
return fig
|
| 255 |
+
# --- NEW CSV GENERATION FUNCTION ---
|
| 256 |
+
def generate_entity_csv(df):
|
| 257 |
+
"""
|
| 258 |
+
Generates a CSV file of the extracted entities in an in-memory buffer,
|
| 259 |
+
including text, label, category, score, start, and end indices.
|
| 260 |
+
"""
|
| 261 |
+
csv_buffer = BytesIO()
|
| 262 |
+
# Select desired columns and write to buffer
|
| 263 |
+
df_export = df[['text', 'label', 'category', 'score', 'start', 'end']]
|
| 264 |
+
csv_buffer.write(df_export.to_csv(index=False).encode('utf-8'))
|
| 265 |
+
csv_buffer.seek(0)
|
| 266 |
+
return csv_buffer
|
| 267 |
+
# -----------------------------------
|
| 268 |
+
# --- Existing App Functionality (HTML) ---
|
| 269 |
+
def generate_html_report(df, text_input, elapsed_time, df_topic_data):
|
| 270 |
+
"""
|
| 271 |
+
Generates a full HTML report containing all analysis results and visualizations.
|
| 272 |
+
(Content omitted for brevity but assumed to be here).
|
| 273 |
+
"""
|
| 274 |
+
# 1. Generate Visualizations (Plotly HTML)
|
| 275 |
+
# 1a. Treemap
|
| 276 |
+
fig_treemap = px.treemap(
|
| 277 |
+
df,
|
| 278 |
+
path=[px.Constant("All Entities"), 'category', 'label', 'text'],
|
| 279 |
+
values='score',
|
| 280 |
+
color='category',
|
| 281 |
+
title="Entity Distribution by Category and Label",
|
| 282 |
+
color_discrete_sequence=px.colors.qualitative.Dark24
|
| 283 |
+
)
|
| 284 |
+
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
| 285 |
+
treemap_html = fig_treemap.to_html(full_html=False, include_plotlyjs='cdn')
|
| 286 |
+
# 1b. Pie Chart
|
| 287 |
+
grouped_counts = df['category'].value_counts().reset_index()
|
| 288 |
+
grouped_counts.columns = ['Category', 'Count']
|
| 289 |
+
# Changed color_discrete_sequence from sequential.RdBu (which has reds) to sequential.Cividis
|
| 290 |
+
fig_pie = px.pie(grouped_counts, values='Count', names='Category',title='Distribution of Entities by Category',color_discrete_sequence=px.colors.sequential.Cividis)
|
| 291 |
+
fig_pie.update_layout(margin=dict(t=50, b=10))
|
| 292 |
+
pie_html = fig_pie.to_html(full_html=False, include_plotlyjs='cdn')
|
| 293 |
+
# 1c. Bar Chart (Category Count)
|
| 294 |
+
fig_bar_category = px.bar(grouped_counts, x='Category', y='Count',color='Category', title='Total Entities per Category',color_discrete_sequence=px.colors.qualitative.Pastel)
|
| 295 |
+
fig_bar_category.update_layout(xaxis={'categoryorder': 'total descending'},margin=dict(t=50, b=100))
|
| 296 |
+
bar_category_html = fig_bar_category.to_html(full_html=False,include_plotlyjs='cdn')
|
| 297 |
+
# 1d. Bar Chart (Most Frequent Entities)
|
| 298 |
+
word_counts = df['text'].value_counts().reset_index()
|
| 299 |
+
word_counts.columns = ['Entity', 'Count']
|
| 300 |
+
repeating_entities = word_counts[word_counts['Count'] > 1].head(10)
|
| 301 |
+
bar_freq_html = '<p>No entities appear more than once in the text for visualization.</p>'
|
| 302 |
+
if not repeating_entities.empty:
|
| 303 |
+
# Changed color_discrete_sequence from sequential.Plasma (which has pink/magenta) to sequential.Viridis
|
| 304 |
+
fig_bar_freq = px.bar(repeating_entities, x='Entity', y='Count',color='Entity', title='Top 10 Most Frequent Entities',color_discrete_sequence=px.colors.sequential.Viridis)
|
| 305 |
+
fig_bar_freq.update_layout(xaxis={'categoryorder': 'total descending'},margin=dict(t=50, b=100))
|
| 306 |
+
bar_freq_html = fig_bar_freq.to_html(full_html=False, include_plotlyjs='cdn')
|
| 307 |
+
# 1e. Network Graph HTML
|
| 308 |
+
network_fig = generate_network_graph(df, text_input)
|
| 309 |
+
network_html = network_fig.to_html(full_html=False, include_plotlyjs='cdn')
|
| 310 |
+
# 1f. Topic Charts HTML
|
| 311 |
+
topic_charts_html = '<h3>Topic Word Weights (Bubble Chart)</h3>'
|
| 312 |
+
if df_topic_data is not None and not df_topic_data.empty:
|
| 313 |
+
bubble_figure = create_topic_word_bubbles(df_topic_data)
|
| 314 |
+
if bubble_figure:
|
| 315 |
+
topic_charts_html += f'<div class="chart-box">{bubble_figure.to_html(full_html=False, include_plotlyjs="cdn")}</div>'
|
| 316 |
+
else:
|
| 317 |
+
topic_charts_html += '<p style="color: red;">Error: Topic modeling data was available but visualization failed.</p>'
|
| 318 |
+
else:
|
| 319 |
+
topic_charts_html += '<div class="chart-box" style="text-align: center; padding: 50px; background-color: #fff; border: 1px dashed #888888;">' # Changed border color
|
| 320 |
+
topic_charts_html += '<p><strong>Topic Modeling requires more unique input.</strong></p>'
|
| 321 |
+
topic_charts_html += '<p>Please enter text containing at least two unique entities to generate the Topic Bubble Chart.</p>'
|
| 322 |
+
topic_charts_html += '</div>'
|
| 323 |
+
# 2. Get Highlighted Text
|
| 324 |
+
highlighted_text_html = highlight_entities(text_input, df).replace("div style", "div class='highlighted-text' style")
|
| 325 |
+
# 3. Entity Tables (Pandas to HTML)
|
| 326 |
+
entity_table_html = df[['text', 'label', 'score', 'start', 'end', 'category']].to_html(
|
| 327 |
+
classes='table table-striped',
|
| 328 |
+
index=False
|
| 329 |
+
)
|
| 330 |
+
# 4. Construct the Final HTML
|
| 331 |
+
html_content = f"""<!DOCTYPE html><html lang="en"><head>
|
| 332 |
+
<meta charset="UTF-8">
|
| 333 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 334 |
+
<title>Entity and Topic Analysis Report</title>
|
| 335 |
+
<script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
|
| 336 |
+
<style>
|
| 337 |
+
body {{ font-family: 'Inter', sans-serif; margin: 0; padding: 20px; background-color: #f4f4f9; color: #333; }}
|
| 338 |
+
.container {{ max-width: 1200px; margin: 0 auto; background-color: #ffffff; padding: 30px; border-radius: 12px; box-shadow: 0 4px 12px rgba(0,0,0,0.1); }}
|
| 339 |
+
h1 {{ color: #007bff; border-bottom: 3px solid #007bff; padding-bottom: 10px; margin-top: 0; }}
|
| 340 |
+
h2 {{ color: #007bff; margin-top: 30px; border-bottom: 1px solid #ddd; padding-bottom: 5px; }}
|
| 341 |
+
h3 {{ color: #555; margin-top: 20px; }}
|
| 342 |
+
.metadata {{ background-color: #e6f0ff; padding: 15px; border-radius: 8px; margin-bottom: 20px; font-size: 0.9em; }}
|
| 343 |
+
.chart-box {{ background-color: #f9f9f9; padding: 15px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.05); min-width: 0; margin-bottom: 20px; }}
|
| 344 |
+
table {{ width: 100%; border-collapse: collapse; margin-top: 15px; }}
|
| 345 |
+
table th, table td {{ border: 1px solid #ddd; padding: 8px; text-align: left; }}
|
| 346 |
+
table th {{ background-color: #f0f0f0; }}
|
| 347 |
+
.highlighted-text {{ border: 1px solid #888888; padding: 15px; border-radius: 5px; background-color: #ffffff; font-family: monospace; white-space: pre-wrap; margin-bottom: 20px; }}
|
| 348 |
+
</style></head><body>
|
| 349 |
+
<div class="container">
|
| 350 |
+
<h1>Entity and Topic Analysis Report</h1>
|
| 351 |
+
<div class="metadata">
|
| 352 |
+
<p><strong>Generated on:</strong> {time.strftime('%Y-%m-%d')}</p>
|
| 353 |
+
<p><strong>Processing Time:</strong> {elapsed_time:.2f} seconds</p>
|
| 354 |
+
</div>
|
| 355 |
+
<h2>1. Analyzed Text & Extracted Entities</h2>
|
| 356 |
+
<h3>Original Text with Highlighted Entities</h3>
|
| 357 |
+
<div class="highlighted-text-container">
|
| 358 |
+
{highlighted_text_html}
|
| 359 |
+
</div>
|
| 360 |
+
<h2>2. Full Extracted Entities Table</h2>
|
| 361 |
+
{entity_table_html}
|
| 362 |
+
<h2>3. Data Visualizations</h2>
|
| 363 |
+
<h3>3.1 Entity Distribution Treemap</h3>
|
| 364 |
+
<div class="chart-box">{treemap_html}</div>
|
| 365 |
+
<h3>3.2 Comparative Charts (Pie, Category Count, Frequency) - *Stacked Vertically*</h3>
|
| 366 |
+
<div class="chart-box">{pie_html}</div>
|
| 367 |
+
<div class="chart-box">{bar_category_html}</div>
|
| 368 |
+
<div class="chart-box">{bar_freq_html}</div>
|
| 369 |
+
<h3>3.3 Entity Relationship Map (Edges = Same Sentence)</h3>
|
| 370 |
+
<div class="chart-box">{network_html}</div>
|
| 371 |
+
<h2>4. Topic Modelling</h2>
|
| 372 |
+
{topic_charts_html}
|
| 373 |
+
</div></body></html>
|
| 374 |
+
"""
|
| 375 |
+
return html_content
|
| 376 |
+
# --- Page Configuration and Styling (No Sidebar) ---
|
| 377 |
+
st.set_page_config(layout="wide", page_title="NER & Topic Report App")
|
| 378 |
+
st.markdown(
|
| 379 |
+
"""
|
| 380 |
+
<style>
|
| 381 |
+
/* Overall app container - NO SIDEBAR */
|
| 382 |
+
.main {
|
| 383 |
+
background-color: #f4f4f9; /* Changed from light pink */
|
| 384 |
+
color: #333333; /* Dark grey text for contrast */
|
| 385 |
+
}
|
| 386 |
+
.stApp {
|
| 387 |
+
background-color: #f4f4f9; /* Changed from light pink */
|
| 388 |
+
}
|
| 389 |
+
/* Text Area background and text color (input fields) */
|
| 390 |
+
.stTextArea textarea {
|
| 391 |
+
background-color: #ffffff; /* Changed from near white/pinkish */
|
| 392 |
+
color: #000000; /* Black text for input */
|
| 393 |
+
border: 1px solid #888888; /* Changed border from pink to grey */
|
| 394 |
+
}
|
| 395 |
+
/* Button styling */
|
| 396 |
+
.stButton > button {
|
| 397 |
+
background-color: #007bff; /* Changed from Deep Pink to Blue */
|
| 398 |
+
color: #FFFFFF; /* White text for contrast */
|
| 399 |
+
border: none;
|
| 400 |
+
padding: 10px 20px;
|
| 401 |
+
border-radius: 5px;
|
| 402 |
+
}
|
| 403 |
+
/* Expander header and content background */
|
| 404 |
+
.streamlit-expanderHeader, .streamlit-expanderContent {
|
| 405 |
+
background-color: #e9ecef; /* Changed from lighter pink to light grey/blue */
|
| 406 |
+
color: #333333;
|
| 407 |
+
}
|
| 408 |
+
</style>
|
| 409 |
+
""",
|
| 410 |
+
unsafe_allow_html=True)
|
| 411 |
+
st.subheader("Entity and Topic Analysis Report Generator", divider="blue") # Changed divider from "rainbow" (often includes red/pink) to "blue"
|
| 412 |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
| 413 |
+
tab1, tab2 = st.tabs(["Embed", "Important Notes"])
|
|
|
|
|
|
|
|
|
|
| 414 |
|
|
|
|
| 415 |
|
|
|
|
| 416 |
|
| 417 |
+
with tab1:
|
| 418 |
+
with st.expander("Embed"):
|
| 419 |
+
st.write("Use the following code to embed the DataHarvest web app on your website. Feel free to adjust the width and height values to fit your page.")
|
| 420 |
+
code = '''
|
| 421 |
+
<iframe
|
| 422 |
+
src="https://aiecosystem-dataharvest.hf.space"
|
| 423 |
+
frameborder="0"
|
| 424 |
+
width="850"
|
| 425 |
+
height="450"
|
| 426 |
+
></iframe>
|
| 427 |
+
'''
|
| 428 |
+
st.code(code, language="html")
|
| 429 |
|
| 430 |
+
with tab2:
|
| 431 |
+
expander = st.expander("**Important Notes**")
|
| 432 |
+
expander.write("""**Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"
|
| 433 |
+
**Results:** Results are compiled into a single, comprehensive **HTML report** and a **CSV file** for easy download and sharing.
|
| 434 |
+
|
| 435 |
+
**How to Use:** Type or paste your text into the text area below, press Ctrl + Enter, and then click the 'Results' button.
|
| 436 |
+
|
| 437 |
+
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.""")
|
| 438 |
+
|
| 439 |
|
| 440 |
st.markdown("For any errors or inquiries, please contact us at [info@nlpblogs.com](mailto:info@nlpblogs.com)")
|
| 441 |
|
| 442 |
+
# --- Comet ML Setup (Placeholder/Conditional) ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 443 |
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
| 444 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
| 445 |
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
| 446 |
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 447 |
# --- Model Loading ---
|
| 448 |
@st.cache_resource
|
| 449 |
def load_ner_model():
|
| 450 |
+
"""Loads the GLiNER model and caches it."""
|
| 451 |
+
try:
|
| 452 |
+
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints=labels)
|
| 453 |
+
except Exception as e:
|
| 454 |
+
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
| 455 |
+
st.stop()
|
| 456 |
model = load_ner_model()
|
| 457 |
+
# --- LONG DEFAULT TEXT (178 Words) ---
|
| 458 |
+
DEFAULT_TEXT = (
|
| 459 |
+
"In June 2024, the founder, Dr. Emily Carter, officially announced a new, expansive partnership between "
|
| 460 |
+
"TechSolutions Inc. and the European Space Agency (ESA). This strategic alliance represents a significant "
|
| 461 |
+
"leap forward for commercial space technology across the entire European Union. The agreement, finalized "
|
| 462 |
+
"on Monday in Paris, France, focuses specifically on jointly developing the next generation of the 'Astra' "
|
| 463 |
+
"software platform. This platform is critical for processing and managing the vast amounts of data being sent "
|
| 464 |
+
"back from the recent Mars rover mission. The core team, including lead engineer Marcus Davies, will hold "
|
| 465 |
+
"their first collaborative workshop in Berlin, Germany, on August 15th. The community response on social "
|
| 466 |
+
"media platform X (under the username @TechSolutionsCEO) was overwhelmingly positive, with many major tech "
|
| 467 |
+
"publications, including Wired Magazine, predicting a major impact on the space technology industry by the "
|
| 468 |
+
"end of the year. The platform is designed to be compatible with both Windows and Linux operating systems. "
|
| 469 |
+
"The initial funding, secured via a Series B round, totaled $50 million. Financial analysts from Morgan Stanley "
|
| 470 |
+
"are closely monitoring the impact on TechSolutions Inc.'s Q3 financial reports, expected to be released to the "
|
| 471 |
+
"general public by October 1st. The goal is to deploy the Astra v2 platform before the next solar eclipse event in 2026.")
|
| 472 |
+
# -----------------------------------
|
| 473 |
+
# --- Session State Initialization (CRITICAL FIX) ---
|
| 474 |
if 'show_results' not in st.session_state:
|
| 475 |
+
st.session_state.show_results = False
|
| 476 |
if 'last_text' not in st.session_state:
|
| 477 |
+
st.session_state.last_text = ""
|
| 478 |
if 'results_df' not in st.session_state:
|
| 479 |
+
st.session_state.results_df = pd.DataFrame()
|
| 480 |
if 'elapsed_time' not in st.session_state:
|
| 481 |
+
st.session_state.elapsed_time = 0.0
|
| 482 |
+
if 'topic_results' not in st.session_state:
|
| 483 |
+
st.session_state.topic_results = None
|
| 484 |
+
if 'my_text_area' not in st.session_state:
|
| 485 |
+
st.session_state.my_text_area = DEFAULT_TEXT
|
| 486 |
+
# --- Clear Button Function (MODIFIED) ---
|
| 487 |
+
def clear_text():
|
| 488 |
+
"""Clears the text area (sets it to an empty string) and hides results."""
|
| 489 |
+
st.session_state['my_text_area'] = ""
|
| 490 |
+
st.session_state.show_results = False
|
| 491 |
+
st.session_state.last_text = ""
|
| 492 |
+
st.session_state.results_df = pd.DataFrame()
|
| 493 |
+
st.session_state.elapsed_time = 0.0
|
| 494 |
+
st.session_state.topic_results = None
|
| 495 |
# --- Text Input and Clear Button ---
|
| 496 |
+
word_limit = 1000
|
| 497 |
+
text = st.text_area(
|
| 498 |
+
f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter",
|
| 499 |
+
height=250,
|
| 500 |
+
key='my_text_area',
|
| 501 |
+
value=st.session_state.my_text_area)
|
| 502 |
word_count = len(text.split())
|
| 503 |
st.markdown(f"**Word count:** {word_count}/{word_limit}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 504 |
st.button("Clear text", on_click=clear_text)
|
| 505 |
+
# --- Results Trigger and Processing (Updated Logic) ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
if st.button("Results"):
|
| 507 |
+
if not text.strip():
|
| 508 |
+
st.warning("Please enter some text to extract entities.")
|
| 509 |
+
st.session_state.show_results = False
|
| 510 |
+
elif word_count > word_limit:
|
| 511 |
+
st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.")
|
| 512 |
+
st.session_state.show_results = False
|
| 513 |
+
else:
|
| 514 |
+
with st.spinner("Extracting entities and generating report data...", show_time=True):
|
| 515 |
+
if text != st.session_state.last_text:
|
| 516 |
+
st.session_state.last_text = text
|
| 517 |
+
start_time = time.time()
|
| 518 |
+
# --- Model Prediction & Dataframe Creation ---
|
| 519 |
+
entities = model.predict_entities(text, labels)
|
| 520 |
+
df = pd.DataFrame(entities)
|
| 521 |
+
if not df.empty:
|
| 522 |
+
df['text'] = df['text'].apply(remove_trailing_punctuation)
|
| 523 |
+
df['category'] = df['label'].map(reverse_category_mapping)
|
| 524 |
+
st.session_state.results_df = df
|
| 525 |
+
unique_entity_count = len(df['text'].unique())
|
| 526 |
+
N_TOP_WORDS_TO_USE = min(10, unique_entity_count)
|
| 527 |
+
st.session_state.topic_results = perform_topic_modeling(
|
| 528 |
+
df,
|
| 529 |
+
num_topics=2,
|
| 530 |
+
num_top_words=N_TOP_WORDS_TO_USE
|
| 531 |
+
)
|
| 532 |
+
if comet_initialized:
|
| 533 |
+
experiment = Experiment(api_key=COMET_API_KEY, workspace=COMET_WORKSPACE, project_name=COMET_PROJECT_NAME)
|
| 534 |
+
experiment.log_parameter("input_text", text)
|
| 535 |
+
experiment.log_table("predicted_entities", df)
|
| 536 |
+
experiment.end()
|
| 537 |
+
else:
|
| 538 |
+
st.session_state.results_df = pd.DataFrame()
|
| 539 |
+
st.session_state.topic_results = None
|
| 540 |
+
end_time = time.time()
|
| 541 |
+
st.session_state.elapsed_time = end_time - start_time
|
| 542 |
+
st.info(f"Report data generated in **{st.session_state.elapsed_time:.2f} seconds**.")
|
| 543 |
+
st.session_state.show_results = True
|
| 544 |
+
# --- Display Download Link and Results ---
|
| 545 |
+
if st.session_state.show_results:
|
| 546 |
+
df = st.session_state.results_df
|
| 547 |
+
df_topic_data = st.session_state.topic_results
|
| 548 |
+
if df.empty:
|
| 549 |
+
st.warning("No entities were found in the provided text.")
|
| 550 |
+
else:
|
| 551 |
+
st.subheader("Analysis Results", divider="blue")
|
| 552 |
+
# 1. Highlighted Text
|
| 553 |
+
st.markdown("### 1. Analyzed Text with Highlighted Entities")
|
| 554 |
+
st.markdown(highlight_entities(st.session_state.last_text, df), unsafe_allow_html=True)
|
| 555 |
|
| 556 |
+
# 2. Detailed Entity Analysis Tabs
|
| 557 |
+
st.markdown("### 2. Detailed Entity Analysis")
|
| 558 |
+
tab_category_details, tab_treemap_viz = st.tabs(["📑 Entities Grouped by Category", "🗺️ Treemap Distribution"])
|
| 559 |
+
with tab_category_details:
|
| 560 |
+
st.markdown("#### Detailed Entities Table (Grouped by Category)")
|
| 561 |
+
with st.expander("See Glossary of tags"):
|
| 562 |
+
st.write('''
|
| 563 |
+
- **text**: ['entity extracted from your text data']
|
| 564 |
+
- **label**: ['label (tag) assigned to a given extracted entity']
|
| 565 |
+
- **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
|
| 566 |
+
- **start**: ['index of the start of the corresponding entity']
|
| 567 |
+
- **end**: ['index of the end of the corresponding entity']
|
| 568 |
+
''')
|
| 569 |
+
unique_categories = list(category_mapping.keys())
|
| 570 |
+
tabs_category = st.tabs(unique_categories)
|
| 571 |
+
for category, tab in zip(unique_categories, tabs_category):
|
| 572 |
+
df_category = df[df['category'] == category][['text', 'label', 'score', 'start', 'end']].sort_values(by='score', ascending=False)
|
| 573 |
+
with tab:
|
| 574 |
+
st.markdown(f"##### {category} Entities ({len(df_category)} total)")
|
| 575 |
+
if not df_category.empty:
|
| 576 |
+
st.dataframe(
|
| 577 |
+
df_category,
|
| 578 |
+
use_container_width=True,
|
| 579 |
+
column_config={'score': st.column_config.NumberColumn(format="%.4f")}
|
| 580 |
+
)
|
| 581 |
+
else:
|
| 582 |
+
st.info(f"No entities of category **{category}** were found in the text.")
|
| 583 |
+
with tab_treemap_viz:
|
| 584 |
+
st.markdown("#### Treemap: Entity Distribution")
|
| 585 |
+
fig_treemap = px.treemap(
|
| 586 |
+
df,
|
| 587 |
+
path=[px.Constant("All Entities"), 'category', 'label', 'text'],
|
| 588 |
+
values='score',
|
| 589 |
+
color='category',
|
| 590 |
+
color_discrete_sequence=px.colors.qualitative.Dark24
|
| 591 |
+
)
|
| 592 |
+
fig_treemap.update_layout(margin=dict(t=10, l=10, r=10, b=10))
|
| 593 |
+
st.plotly_chart(fig_treemap, use_container_width=True)
|
| 594 |
+
# 3. Comparative Charts
|
| 595 |
+
st.markdown("---")
|
| 596 |
+
st.markdown("### 3. Comparative Charts")
|
| 597 |
+
col1, col2, col3 = st.columns(3)
|
| 598 |
+
grouped_counts = df['category'].value_counts().reset_index()
|
| 599 |
+
grouped_counts.columns = ['Category', 'Count']
|
| 600 |
+
with col1: # Pie Chart
|
| 601 |
+
# Changed color_discrete_sequence
|
| 602 |
+
fig_pie = px.pie(grouped_counts, values='Count', names='Category',title='Distribution of Entities by Category',color_discrete_sequence=px.colors.sequential.Cividis)
|
| 603 |
+
fig_pie.update_layout(margin=dict(t=30, b=10, l=10, r=10), height=350)
|
| 604 |
+
st.plotly_chart(fig_pie, use_container_width=True)
|
| 605 |
+
with col2: # Bar Chart (Category Count)
|
| 606 |
+
fig_bar_category = px.bar(grouped_counts, x='Category', y='Count',color='Category', title='Total Entities per Category',color_discrete_sequence=px.colors.qualitative.Pastel)
|
| 607 |
+
fig_bar_category.update_layout(xaxis={'categoryorder': 'total descending'},margin=dict(t=30, b=10, l=10, r=10), height=350)
|
| 608 |
+
st.plotly_chart(fig_bar_category, use_container_width=True)
|
| 609 |
+
with col3: # Bar Chart (Most Frequent Entities)
|
| 610 |
+
word_counts = df['text'].value_counts().reset_index()
|
| 611 |
+
word_counts.columns = ['Entity', 'Count']
|
| 612 |
+
repeating_entities = word_counts[word_counts['Count'] > 1].head(10)
|
| 613 |
+
if not repeating_entities.empty:
|
| 614 |
+
# Changed color_discrete_sequence
|
| 615 |
+
fig_bar_freq = px.bar(repeating_entities, x='Entity', y='Count',color='Entity', title='Top 10 Most Frequent Entities',color_discrete_sequence=px.colors.sequential.Viridis)
|
| 616 |
+
fig_bar_freq.update_layout(xaxis={'categoryorder': 'total descending'},margin=dict(t=30, b=10, l=10, r=10), height=350)
|
| 617 |
+
st.plotly_chart(fig_bar_freq, use_container_width=True)
|
| 618 |
+
else:
|
| 619 |
+
st.info("No entities repeat for frequency chart.")
|
| 620 |
+
st.markdown("---")
|
| 621 |
+
st.markdown("### 4. Entity Relationship Map")
|
| 622 |
+
network_fig = generate_network_graph(df, st.session_state.last_text)
|
| 623 |
+
st.plotly_chart(network_fig, use_container_width=True)
|
| 624 |
+
st.markdown("---")
|
| 625 |
+
st.markdown("### 5. Topic Modelling Analysis")
|
| 626 |
+
if df_topic_data is not None and not df_topic_data.empty:
|
| 627 |
+
bubble_figure = create_topic_word_bubbles(df_topic_data)
|
| 628 |
+
if bubble_figure:
|
| 629 |
+
st.plotly_chart(bubble_figure, use_container_width=True)
|
| 630 |
+
else:
|
| 631 |
+
st.error("Error generating Topic Word Bubble Chart.")
|
| 632 |
+
else:
|
| 633 |
+
st.info("Topic modeling requires more unique input (at least two unique entities).")
|
| 634 |
+
# --- Report Download ---
|
| 635 |
+
st.markdown("---")
|
| 636 |
+
st.markdown("### Download Full Report Artifacts")
|
| 637 |
+
# 1. HTML Report Download (Retained)
|
| 638 |
+
html_report = generate_html_report(df, st.session_state.last_text, st.session_state.elapsed_time, df_topic_data)
|
| 639 |
+
st.download_button(
|
| 640 |
+
label="Download Comprehensive HTML Report",
|
| 641 |
+
data=html_report,
|
| 642 |
+
file_name="ner_topic_report.html",
|
| 643 |
+
mime="text/html",
|
| 644 |
+
type="primary"
|
| 645 |
+
)
|
| 646 |
|
| 647 |
+
# 2. CSV Data Download (NEW)
|
| 648 |
+
csv_buffer = generate_entity_csv(df)
|
| 649 |
+
st.download_button(
|
| 650 |
+
label="Download Extracted Entities (CSV)",
|
| 651 |
+
data=csv_buffer,
|
| 652 |
+
file_name="extracted_entities.csv",
|
| 653 |
+
mime="text/csv",
|
| 654 |
+
type="secondary"
|
| 655 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 656 |
|
| 657 |
+
|