Spaces:
Running
Running
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +14 -1
src/streamlit_app.py
CHANGED
|
@@ -48,7 +48,7 @@ with st.sidebar:
|
|
| 48 |
st.code(code, language="html")
|
| 49 |
st.text("")
|
| 50 |
st.text("")
|
| 51 |
-
|
| 52 |
st.subheader("π Ready to build your own AI Web App?", divider="violet")
|
| 53 |
st.link_button("AI Web App Builder", "https://nlpblogs.com/build-your-named-entity-recognition-app/", type="primary")
|
| 54 |
|
|
@@ -179,6 +179,9 @@ if st.session_state.show_results:
|
|
| 179 |
st.subheader("Tree map", divider="violet")
|
| 180 |
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
|
| 181 |
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
|
|
|
|
|
|
|
|
|
| 182 |
st.plotly_chart(fig_treemap)
|
| 183 |
|
| 184 |
# Pie and Bar charts
|
|
@@ -190,11 +193,17 @@ if st.session_state.show_results:
|
|
| 190 |
st.subheader("Pie chart", divider="violet")
|
| 191 |
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
| 192 |
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
|
|
|
|
|
|
|
|
|
| 193 |
st.plotly_chart(fig_pie)
|
| 194 |
|
| 195 |
with col2:
|
| 196 |
st.subheader("Bar chart", divider="violet")
|
| 197 |
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
|
|
|
|
|
|
|
|
|
|
| 198 |
st.plotly_chart(fig_bar)
|
| 199 |
|
| 200 |
# Most Frequent Entities
|
|
@@ -207,6 +216,9 @@ if st.session_state.show_results:
|
|
| 207 |
st.dataframe(repeating_entities, use_container_width=True)
|
| 208 |
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
|
| 209 |
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'})
|
|
|
|
|
|
|
|
|
|
| 210 |
st.plotly_chart(fig_repeating_bar)
|
| 211 |
else:
|
| 212 |
st.warning("No entities were found that occur more than once.")
|
|
@@ -219,6 +231,7 @@ if st.session_state.show_results:
|
|
| 219 |
buf = io.BytesIO()
|
| 220 |
with zipfile.ZipFile(buf, "w") as myzip:
|
| 221 |
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
|
|
|
| 222 |
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
| 223 |
|
| 224 |
with stylable_container(
|
|
|
|
| 48 |
st.code(code, language="html")
|
| 49 |
st.text("")
|
| 50 |
st.text("")
|
| 51 |
+
|
| 52 |
st.subheader("π Ready to build your own AI Web App?", divider="violet")
|
| 53 |
st.link_button("AI Web App Builder", "https://nlpblogs.com/build-your-named-entity-recognition-app/", type="primary")
|
| 54 |
|
|
|
|
| 179 |
st.subheader("Tree map", divider="violet")
|
| 180 |
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
|
| 181 |
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
| 182 |
+
expander = st.expander("**Download**")
|
| 183 |
+
expander.write("""You can easily download the tree map by hovering over it. Look for the download icon that appears in the top right corner.
|
| 184 |
+
""")
|
| 185 |
st.plotly_chart(fig_treemap)
|
| 186 |
|
| 187 |
# Pie and Bar charts
|
|
|
|
| 193 |
st.subheader("Pie chart", divider="violet")
|
| 194 |
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
| 195 |
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
| 196 |
+
expander = st.expander("**Download**")
|
| 197 |
+
expander.write("""You can easily download the pie chart by hovering over it. Look for the download icon that appears in the top right corner.
|
| 198 |
+
""")
|
| 199 |
st.plotly_chart(fig_pie)
|
| 200 |
|
| 201 |
with col2:
|
| 202 |
st.subheader("Bar chart", divider="violet")
|
| 203 |
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
|
| 204 |
+
expander = st.expander("**Download**")
|
| 205 |
+
expander.write("""You can easily download the bar chart by hovering over it. Look for the download icon that appears in the top right corner.
|
| 206 |
+
""")
|
| 207 |
st.plotly_chart(fig_bar)
|
| 208 |
|
| 209 |
# Most Frequent Entities
|
|
|
|
| 216 |
st.dataframe(repeating_entities, use_container_width=True)
|
| 217 |
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
|
| 218 |
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'})
|
| 219 |
+
expander = st.expander("**Download**")
|
| 220 |
+
expander.write("""You can easily download the bar chart by hovering over it. Look for the download icon that appears in the top right corner.
|
| 221 |
+
""")
|
| 222 |
st.plotly_chart(fig_repeating_bar)
|
| 223 |
else:
|
| 224 |
st.warning("No entities were found that occur more than once.")
|
|
|
|
| 231 |
buf = io.BytesIO()
|
| 232 |
with zipfile.ZipFile(buf, "w") as myzip:
|
| 233 |
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
| 234 |
+
myzip.writestr("Most Frequent Entities.csv", repeating_entities.to_csv(index=False))
|
| 235 |
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
| 236 |
|
| 237 |
with stylable_container(
|