AIEcosystem commited on
Commit
99665c4
·
verified ·
1 Parent(s): 08999dc

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +4 -4
src/streamlit_app.py CHANGED
@@ -25,7 +25,7 @@ st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
25
  st.markdown(':rainbow[**Supported Languages: English**]')
26
 
27
  expander = st.expander("**Important notes**")
28
- expander.write("""**Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "seconds", "money", "percent value", "position"
29
 
30
  Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
31
 
@@ -66,7 +66,7 @@ if not comet_initialized:
66
  st.warning("Comet ML not initialized. Check environment variables.")
67
 
68
  # --- Label Definitions ---
69
- labels = ["person", "country", "city", "organization", "date", "seconds", "money", "percent value", "position"]
70
 
71
  # Corrected mapping dictionary
72
 
@@ -74,8 +74,8 @@ labels = ["person", "country", "city", "organization", "date", "seconds", "money
74
  category_mapping = {
75
  "People": ["person", "organization", "position"],
76
  "Locations": ["country", "city"],
77
- "Time": ["date", "seconds"],
78
- "Numbers": ["money", "percent value"]
79
  }
80
 
81
 
 
25
  st.markdown(':rainbow[**Supported Languages: English**]')
26
 
27
  expander = st.expander("**Important notes**")
28
+ expander.write("""**Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "money", "percent value", "position"
29
 
30
  Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
31
 
 
66
  st.warning("Comet ML not initialized. Check environment variables.")
67
 
68
  # --- Label Definitions ---
69
+ labels = ["person", "country", "city", "organization", "date", "time", "money", "percent_value", "position"]
70
 
71
  # Corrected mapping dictionary
72
 
 
74
  category_mapping = {
75
  "People": ["person", "organization", "position"],
76
  "Locations": ["country", "city"],
77
+ "Time": ["date", "time"],
78
+ "Numbers": ["money", "percent_value"]
79
  }
80
 
81