Spaces:
Running
Running
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +4 -4
src/streamlit_app.py
CHANGED
|
@@ -21,7 +21,7 @@ st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
|
| 21 |
st.markdown(':rainbow[**Supported Languages: English**]')
|
| 22 |
|
| 23 |
expander = st.expander("**Important notes**")
|
| 24 |
-
expander.write("""**Named Entities:** This DataHarvest web app predicts
|
| 25 |
|
| 26 |
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
| 27 |
|
|
@@ -59,7 +59,7 @@ if not comet_initialized:
|
|
| 59 |
|
| 60 |
# --- Label Definitions ---
|
| 61 |
|
| 62 |
-
labels = ["person", "country", "city", "organization", "date", "time", "
|
| 63 |
|
| 64 |
# Corrected mapping dictionary
|
| 65 |
# Create a mapping dictionary for labels to categories
|
|
@@ -67,7 +67,7 @@ category_mapping = {
|
|
| 67 |
"People": ["person", "organization", "position"],
|
| 68 |
"Locations": ["country", "city"],
|
| 69 |
"Time": ["date", "time"],
|
| 70 |
-
"Numbers": ["money", "
|
| 71 |
}
|
| 72 |
|
| 73 |
# --- Model Loading ---
|
|
@@ -75,7 +75,7 @@ category_mapping = {
|
|
| 75 |
def load_ner_model():
|
| 76 |
"""Loads the GLiNER model and caches it."""
|
| 77 |
try:
|
| 78 |
-
return GLiNER.from_pretrained("gliner-
|
| 79 |
except Exception as e:
|
| 80 |
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
| 81 |
st.stop()
|
|
|
|
| 21 |
st.markdown(':rainbow[**Supported Languages: English**]')
|
| 22 |
|
| 23 |
expander = st.expander("**Important notes**")
|
| 24 |
+
expander.write("""**Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"
|
| 25 |
|
| 26 |
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
| 27 |
|
|
|
|
| 59 |
|
| 60 |
# --- Label Definitions ---
|
| 61 |
|
| 62 |
+
labels = ["person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"]
|
| 63 |
|
| 64 |
# Corrected mapping dictionary
|
| 65 |
# Create a mapping dictionary for labels to categories
|
|
|
|
| 67 |
"People": ["person", "organization", "position"],
|
| 68 |
"Locations": ["country", "city"],
|
| 69 |
"Time": ["date", "time"],
|
| 70 |
+
"Numbers": ["money", "cardinal"]
|
| 71 |
}
|
| 72 |
|
| 73 |
# --- Model Loading ---
|
|
|
|
| 75 |
def load_ner_model():
|
| 76 |
"""Loads the GLiNER model and caches it."""
|
| 77 |
try:
|
| 78 |
+
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints= labels)
|
| 79 |
except Exception as e:
|
| 80 |
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
| 81 |
st.stop()
|