AIEcosystem commited on
Commit
ecaff1f
·
verified ·
1 Parent(s): 0295c27

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +7 -9
src/streamlit_app.py CHANGED
@@ -13,7 +13,6 @@ from typing import Optional
13
  from gliner import GLiNER
14
  from comet_ml import Experiment
15
 
16
-
17
  # --- Page Configuration and UI Elements ---
18
  st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
19
  st.subheader("DataHarvest", divider="violet")
@@ -21,7 +20,11 @@ st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
21
  st.markdown(':rainbow[**Supported Languages: English**]')
22
 
23
  expander = st.expander("**Important notes**")
24
- expander.write("""**Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.**Usage Limits:** You can request results unlimited times for one (1) month.**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. For any errors or inquiries, please contact us at info@nlpblogs.com""")
 
 
 
 
25
 
26
  with st.sidebar:
27
  st.write("Use the following code to embed the DataHarvest web app on your website. Feel free to adjust the width and height values to fit your page.")
@@ -89,11 +92,6 @@ def clear_text():
89
  st.session_state.results_df = pd.DataFrame()
90
  st.session_state.elapsed_time = 0.0
91
 
92
- def remove_punctuation(text):
93
- """Removes punctuation from a string."""
94
- translator = str.maketrans('', '', string.punctuation)
95
- return text.translate(translator)
96
-
97
  st.button("Clear text", on_click=clear_text)
98
 
99
  # --- Results Section ---
@@ -111,8 +109,8 @@ if st.button("Results"):
111
  st.session_state.last_text = text
112
  start_time = time.time()
113
  with st.spinner("Extracting entities...", show_time=True):
114
- cleaned_text = remove_punctuation(text)
115
- entities = model.predict_entities(cleaned_text, labels)
116
  df = pd.DataFrame(entities)
117
  st.session_state.results_df = df
118
  if not df.empty:
 
13
  from gliner import GLiNER
14
  from comet_ml import Experiment
15
 
 
16
  # --- Page Configuration and UI Elements ---
17
  st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
18
  st.subheader("DataHarvest", divider="violet")
 
20
  st.markdown(':rainbow[**Supported Languages: English**]')
21
 
22
  expander = st.expander("**Important notes**")
23
+ expander.write("""**Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"
24
+ Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
25
+ **How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
26
+ **Usage Limits:** You can request results unlimited times for one (1) month.
27
+ **Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. For any errors or inquiries, please contact us at info@nlpblogs.com""")
28
 
29
  with st.sidebar:
30
  st.write("Use the following code to embed the DataHarvest web app on your website. Feel free to adjust the width and height values to fit your page.")
 
92
  st.session_state.results_df = pd.DataFrame()
93
  st.session_state.elapsed_time = 0.0
94
 
 
 
 
 
 
95
  st.button("Clear text", on_click=clear_text)
96
 
97
  # --- Results Section ---
 
109
  st.session_state.last_text = text
110
  start_time = time.time()
111
  with st.spinner("Extracting entities...", show_time=True):
112
+ # Pass the raw text directly to the model
113
+ entities = model.predict_entities(text, labels)
114
  df = pd.DataFrame(entities)
115
  st.session_state.results_df = df
116
  if not df.empty: