Spaces:
Running
Running
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +102 -124
src/streamlit_app.py
CHANGED
|
@@ -14,36 +14,23 @@ from typing import Optional
|
|
| 14 |
from gliner import GLiNER
|
| 15 |
from comet_ml import Experiment
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
# --- Page Configuration and UI Elements ---
|
| 20 |
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
st.subheader("DataHarvest", divider="violet")
|
| 22 |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
| 23 |
st.markdown(':rainbow[**Supported Languages: English**]')
|
| 24 |
expander = st.expander("**Important notes**")
|
| 25 |
-
expander.write("""**Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"
|
| 26 |
-
|
| 27 |
-
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
| 28 |
-
|
| 29 |
-
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
|
| 30 |
-
|
| 31 |
-
**Usage Limits:** You can request results unlimited times for one (1) month.
|
| 32 |
-
|
| 33 |
-
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
|
| 34 |
-
|
| 35 |
-
For any errors or inquiries, please contact us at info@nlpblogs.com""")
|
| 36 |
|
| 37 |
with st.sidebar:
|
| 38 |
st.write("Use the following code to embed the DataHarvest web app on your website. Feel free to adjust the width and height values to fit your page.")
|
| 39 |
code = '''
|
| 40 |
-
<iframe
|
| 41 |
-
src="https://aiecosystem-dataharvest.hf.space"
|
| 42 |
-
frameborder="0"
|
| 43 |
-
width="850"
|
| 44 |
-
height="450"
|
| 45 |
-
></iframe>
|
| 46 |
-
|
| 47 |
'''
|
| 48 |
st.code(code, language="html")
|
| 49 |
st.text("")
|
|
@@ -62,8 +49,6 @@ if not comet_initialized:
|
|
| 62 |
|
| 63 |
# --- Label Definitions ---
|
| 64 |
labels = ["person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"]
|
| 65 |
-
# Corrected mapping dictionary
|
| 66 |
-
# Create a mapping dictionary for labels to categories
|
| 67 |
category_mapping = {
|
| 68 |
"People": ["person", "organization", "position"],
|
| 69 |
"Locations": ["country", "city"],
|
|
@@ -73,16 +58,23 @@ category_mapping = {
|
|
| 73 |
# --- Model Loading ---
|
| 74 |
@st.cache_resource
|
| 75 |
def load_ner_model():
|
| 76 |
-
"""Loads the GLiNER model and caches it."""
|
| 77 |
try:
|
| 78 |
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints= labels)
|
| 79 |
except Exception as e:
|
| 80 |
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
| 81 |
st.stop()
|
| 82 |
model = load_ner_model()
|
| 83 |
-
# Flatten the mapping to a single dictionary
|
| 84 |
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
# --- Text Input and Clear Button ---
|
| 87 |
word_limit = 200
|
| 88 |
text = st.text_area(f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter", height=250, key='my_text_area')
|
|
@@ -90,8 +82,10 @@ word_count = len(text.split())
|
|
| 90 |
st.markdown(f"**Word count:** {word_count}/{word_limit}")
|
| 91 |
|
| 92 |
def clear_text():
|
| 93 |
-
"""Clears the text area."""
|
| 94 |
st.session_state['my_text_area'] = ""
|
|
|
|
|
|
|
| 95 |
|
| 96 |
def remove_punctuation(text):
|
| 97 |
"""Removes punctuation from a string."""
|
|
@@ -104,118 +98,102 @@ st.button("Clear text", on_click=clear_text)
|
|
| 104 |
if st.button("Results"):
|
| 105 |
if not text.strip():
|
| 106 |
st.warning("Please enter some text to extract entities.")
|
|
|
|
| 107 |
elif word_count > word_limit:
|
| 108 |
st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.")
|
|
|
|
| 109 |
else:
|
|
|
|
|
|
|
| 110 |
start_time = time.time()
|
| 111 |
-
# Call the new function to remove punctuation from the input text
|
| 112 |
-
cleaned_text = remove_punctuation(text)
|
| 113 |
with st.spinner("Extracting entities...", show_time=True):
|
| 114 |
-
|
| 115 |
entities = model.predict_entities(cleaned_text, labels)
|
| 116 |
df = pd.DataFrame(entities)
|
|
|
|
| 117 |
if not df.empty:
|
| 118 |
df['category'] = df['label'].map(reverse_category_mapping)
|
| 119 |
if comet_initialized:
|
| 120 |
-
experiment = Experiment(
|
| 121 |
-
api_key=COMET_API_KEY,
|
| 122 |
-
workspace=COMET_WORKSPACE,
|
| 123 |
-
project_name=COMET_PROJECT_NAME,
|
| 124 |
-
)
|
| 125 |
experiment.log_parameter("input_text", text)
|
| 126 |
experiment.log_table("predicted_entities", df)
|
| 127 |
-
st.subheader("Grouped Entities by Category", divider = "violet")
|
| 128 |
-
# Create tabs for each category
|
| 129 |
-
category_names = sorted(list(category_mapping.keys()))
|
| 130 |
-
category_tabs = st.tabs(category_names)
|
| 131 |
-
for i, category_name in enumerate(category_names):
|
| 132 |
-
with category_tabs[i]:
|
| 133 |
-
df_category_filtered = df[df['category'] == category_name]
|
| 134 |
-
if not df_category_filtered.empty:
|
| 135 |
-
st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
|
| 136 |
-
else:
|
| 137 |
-
st.info(f"No entities found for the '{category_name}' category.")
|
| 138 |
-
with st.expander("See Glossary of tags"):
|
| 139 |
-
st.write('''
|
| 140 |
-
- **text**: ['entity extracted from your text data']
|
| 141 |
-
- **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
|
| 142 |
-
- **label**: ['label (tag) assigned to a given extracted entity']
|
| 143 |
-
- **start**: ['index of the start of the corresponding entity']
|
| 144 |
-
- **end**: ['index of the end of the corresponding entity']
|
| 145 |
-
''')
|
| 146 |
-
st.divider()
|
| 147 |
-
# Tree map
|
| 148 |
-
st.subheader("Tree map", divider = "violet")
|
| 149 |
-
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
|
| 150 |
-
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
| 151 |
-
st.plotly_chart(fig_treemap)
|
| 152 |
-
# Pie and Bar charts
|
| 153 |
-
grouped_counts = df['category'].value_counts().reset_index()
|
| 154 |
-
grouped_counts.columns = ['category', 'count']
|
| 155 |
-
col1, col2 = st.columns(2)
|
| 156 |
-
with col1:
|
| 157 |
-
st.subheader("Pie chart", divider = "violet")
|
| 158 |
-
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
| 159 |
-
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
| 160 |
-
fig_pie.update_layout(
|
| 161 |
-
)
|
| 162 |
-
st.plotly_chart(fig_pie)
|
| 163 |
-
with col2:
|
| 164 |
-
st.subheader("Bar chart", divider = "violet")
|
| 165 |
-
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
|
| 166 |
-
fig_bar.update_layout( # Changed from fig_pie to fig_bar
|
| 167 |
-
)
|
| 168 |
-
st.plotly_chart(fig_bar)
|
| 169 |
-
# Most Frequent Entities
|
| 170 |
-
st.subheader("Most Frequent Entities", divider="violet")
|
| 171 |
-
word_counts = df['text'].value_counts().reset_index()
|
| 172 |
-
word_counts.columns = ['Entity', 'Count']
|
| 173 |
-
repeating_entities = word_counts[word_counts['Count'] > 1]
|
| 174 |
-
if not repeating_entities.empty:
|
| 175 |
-
st.dataframe(repeating_entities, use_container_width=True)
|
| 176 |
-
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
|
| 177 |
-
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'},
|
| 178 |
-
)
|
| 179 |
-
st.plotly_chart(fig_repeating_bar)
|
| 180 |
-
else:
|
| 181 |
-
st.warning("No entities were found that occur more than once.")
|
| 182 |
-
# Download Section
|
| 183 |
-
st.divider()
|
| 184 |
-
dfa = pd.DataFrame(
|
| 185 |
-
data={
|
| 186 |
-
'Column Name': ['text', 'label', 'score', 'start', 'end'],
|
| 187 |
-
'Description': [
|
| 188 |
-
'entity extracted from your text data',
|
| 189 |
-
'label (tag) assigned to a given extracted entity',
|
| 190 |
-
'accuracy score; how accurately a tag has been assigned to a given entity',
|
| 191 |
-
'index of the start of the corresponding entity',
|
| 192 |
-
'index of the end of the corresponding entity',
|
| 193 |
-
]
|
| 194 |
-
}
|
| 195 |
-
)
|
| 196 |
-
buf = io.BytesIO()
|
| 197 |
-
with zipfile.ZipFile(buf, "w") as myzip:
|
| 198 |
-
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
| 199 |
-
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
| 200 |
-
with stylable_container(
|
| 201 |
-
key="download_button",
|
| 202 |
-
css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
|
| 203 |
-
):
|
| 204 |
-
st.download_button(
|
| 205 |
-
label="Download results and glossary (zip)",
|
| 206 |
-
data=buf.getvalue(),
|
| 207 |
-
file_name="nlpblogs_results.zip",
|
| 208 |
-
mime="application/zip",
|
| 209 |
-
)
|
| 210 |
-
if comet_initialized:
|
| 211 |
-
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
|
| 212 |
experiment.end()
|
| 213 |
|
| 214 |
-
# Corrected placement for time calculation and display
|
| 215 |
end_time = time.time()
|
| 216 |
elapsed_time = end_time - start_time
|
| 217 |
-
st.
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
from gliner import GLiNER
|
| 15 |
from comet_ml import Experiment
|
| 16 |
|
|
|
|
|
|
|
| 17 |
# --- Page Configuration and UI Elements ---
|
| 18 |
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
| 19 |
+
st.markdown("""
|
| 20 |
+
<style>
|
| 21 |
+
/* ... (Your CSS Styles) ... */
|
| 22 |
+
</style>
|
| 23 |
+
""", unsafe_allow_html=True)
|
| 24 |
st.subheader("DataHarvest", divider="violet")
|
| 25 |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
| 26 |
st.markdown(':rainbow[**Supported Languages: English**]')
|
| 27 |
expander = st.expander("**Important notes**")
|
| 28 |
+
expander.write("""**Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.**Usage Limits:** You can request results unlimited times for one (1) month.**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. For any errors or inquiries, please contact us at info@nlpblogs.com""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
with st.sidebar:
|
| 31 |
st.write("Use the following code to embed the DataHarvest web app on your website. Feel free to adjust the width and height values to fit your page.")
|
| 32 |
code = '''
|
| 33 |
+
<iframe src="https://aiecosystem-dataharvest.hf.space" frameborder="0" width="850" height="450" ></iframe>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
'''
|
| 35 |
st.code(code, language="html")
|
| 36 |
st.text("")
|
|
|
|
| 49 |
|
| 50 |
# --- Label Definitions ---
|
| 51 |
labels = ["person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"]
|
|
|
|
|
|
|
| 52 |
category_mapping = {
|
| 53 |
"People": ["person", "organization", "position"],
|
| 54 |
"Locations": ["country", "city"],
|
|
|
|
| 58 |
# --- Model Loading ---
|
| 59 |
@st.cache_resource
|
| 60 |
def load_ner_model():
|
|
|
|
| 61 |
try:
|
| 62 |
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints= labels)
|
| 63 |
except Exception as e:
|
| 64 |
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
| 65 |
st.stop()
|
| 66 |
model = load_ner_model()
|
|
|
|
| 67 |
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
|
| 68 |
|
| 69 |
+
# --- Session State Initialization ---
|
| 70 |
+
# This is the key fix. We use session state to control what is displayed.
|
| 71 |
+
if 'show_results' not in st.session_state:
|
| 72 |
+
st.session_state.show_results = False
|
| 73 |
+
if 'last_text' not in st.session_state:
|
| 74 |
+
st.session_state.last_text = ""
|
| 75 |
+
if 'results_df' not in st.session_state:
|
| 76 |
+
st.session_state.results_df = pd.DataFrame()
|
| 77 |
+
|
| 78 |
# --- Text Input and Clear Button ---
|
| 79 |
word_limit = 200
|
| 80 |
text = st.text_area(f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter", height=250, key='my_text_area')
|
|
|
|
| 82 |
st.markdown(f"**Word count:** {word_count}/{word_limit}")
|
| 83 |
|
| 84 |
def clear_text():
|
| 85 |
+
"""Clears the text area and hides results."""
|
| 86 |
st.session_state['my_text_area'] = ""
|
| 87 |
+
st.session_state.show_results = False
|
| 88 |
+
st.session_state.last_text = ""
|
| 89 |
|
| 90 |
def remove_punctuation(text):
|
| 91 |
"""Removes punctuation from a string."""
|
|
|
|
| 98 |
if st.button("Results"):
|
| 99 |
if not text.strip():
|
| 100 |
st.warning("Please enter some text to extract entities.")
|
| 101 |
+
st.session_state.show_results = False
|
| 102 |
elif word_count > word_limit:
|
| 103 |
st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.")
|
| 104 |
+
st.session_state.show_results = False
|
| 105 |
else:
|
| 106 |
+
st.session_state.show_results = True
|
| 107 |
+
st.session_state.last_text = text
|
| 108 |
start_time = time.time()
|
|
|
|
|
|
|
| 109 |
with st.spinner("Extracting entities...", show_time=True):
|
| 110 |
+
cleaned_text = remove_punctuation(text)
|
| 111 |
entities = model.predict_entities(cleaned_text, labels)
|
| 112 |
df = pd.DataFrame(entities)
|
| 113 |
+
st.session_state.results_df = df
|
| 114 |
if not df.empty:
|
| 115 |
df['category'] = df['label'].map(reverse_category_mapping)
|
| 116 |
if comet_initialized:
|
| 117 |
+
experiment = Experiment(api_key=COMET_API_KEY, workspace=COMET_WORKSPACE, project_name=COMET_PROJECT_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
experiment.log_parameter("input_text", text)
|
| 119 |
experiment.log_table("predicted_entities", df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
experiment.end()
|
| 121 |
|
|
|
|
| 122 |
end_time = time.time()
|
| 123 |
elapsed_time = end_time - start_time
|
| 124 |
+
st.session_state.elapsed_time = elapsed_time
|
| 125 |
+
|
| 126 |
+
# Display results if the state variable is True
|
| 127 |
+
if st.session_state.show_results:
|
| 128 |
+
df = st.session_state.results_df
|
| 129 |
+
if not df.empty:
|
| 130 |
+
st.subheader("Grouped Entities by Category", divider = "violet")
|
| 131 |
+
category_names = sorted(list(category_mapping.keys()))
|
| 132 |
+
category_tabs = st.tabs(category_names)
|
| 133 |
+
for i, category_name in enumerate(category_names):
|
| 134 |
+
with category_tabs[i]:
|
| 135 |
+
df_category_filtered = df[df['category'] == category_name]
|
| 136 |
+
if not df_category_filtered.empty:
|
| 137 |
+
st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
|
| 138 |
+
else:
|
| 139 |
+
st.info(f"No entities found for the '{category_name}' category.")
|
| 140 |
+
|
| 141 |
+
with st.expander("See Glossary of tags"):
|
| 142 |
+
st.write('''
|
| 143 |
+
- **text**: ['entity extracted from your text data']
|
| 144 |
+
- **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
|
| 145 |
+
- **label**: ['label (tag) assigned to a given extracted entity']
|
| 146 |
+
- **start**: ['index of the start of the corresponding entity']
|
| 147 |
+
- **end**: ['index of the end of the corresponding entity']
|
| 148 |
+
''')
|
| 149 |
+
st.divider()
|
| 150 |
+
|
| 151 |
+
# Tree map
|
| 152 |
+
st.subheader("Tree map", divider = "violet")
|
| 153 |
+
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
|
| 154 |
+
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
| 155 |
+
st.plotly_chart(fig_treemap)
|
| 156 |
+
|
| 157 |
+
# Pie and Bar charts
|
| 158 |
+
grouped_counts = df['category'].value_counts().reset_index()
|
| 159 |
+
grouped_counts.columns = ['category', 'count']
|
| 160 |
+
col1, col2 = st.columns(2)
|
| 161 |
+
with col1:
|
| 162 |
+
st.subheader("Pie chart", divider = "violet")
|
| 163 |
+
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
| 164 |
+
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
| 165 |
+
st.plotly_chart(fig_pie)
|
| 166 |
+
with col2:
|
| 167 |
+
st.subheader("Bar chart", divider = "violet")
|
| 168 |
+
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
|
| 169 |
+
st.plotly_chart(fig_bar)
|
| 170 |
+
|
| 171 |
+
# Most Frequent Entities
|
| 172 |
+
st.subheader("Most Frequent Entities", divider="violet")
|
| 173 |
+
word_counts = df['text'].value_counts().reset_index()
|
| 174 |
+
word_counts.columns = ['Entity', 'Count']
|
| 175 |
+
repeating_entities = word_counts[word_counts['Count'] > 1]
|
| 176 |
+
if not repeating_entities.empty:
|
| 177 |
+
st.dataframe(repeating_entities, use_container_width=True)
|
| 178 |
+
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
|
| 179 |
+
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'})
|
| 180 |
+
st.plotly_chart(fig_repeating_bar)
|
| 181 |
+
else:
|
| 182 |
+
st.warning("No entities were found that occur more than once.")
|
| 183 |
+
|
| 184 |
+
# Download Section
|
| 185 |
+
st.divider()
|
| 186 |
+
dfa = pd.DataFrame(data={'Column Name': ['text', 'label', 'score', 'start', 'end'],
|
| 187 |
+
'Description': ['entity extracted from your text data', 'label (tag) assigned to a given extracted entity', 'accuracy score; how accurately a tag has been assigned to a given entity', 'index of the start of the corresponding entity', 'index of the end of the corresponding entity']})
|
| 188 |
+
buf = io.BytesIO()
|
| 189 |
+
with zipfile.ZipFile(buf, "w") as myzip:
|
| 190 |
+
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
| 191 |
+
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
| 192 |
+
with stylable_container(key="download_button", css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",):
|
| 193 |
+
st.download_button(label="Download results and glossary (zip)", data=buf.getvalue(), file_name="nlpblogs_results.zip", mime="application/zip")
|
| 194 |
+
|
| 195 |
+
st.text("")
|
| 196 |
+
st.text("")
|
| 197 |
+
st.info(f"Results processed in **{st.session_state.elapsed_time:.2f} seconds**.")
|
| 198 |
+
else: # If df is empty after the button click
|
| 199 |
+
st.warning("No entities were found in the provided text.")
|