Spaces:
Sleeping
Sleeping
| import os | |
| os.environ['HF_HOME'] = '/tmp' | |
| import os | |
| import time | |
| import streamlit as st | |
| import pandas as pd | |
| import io | |
| import plotly.express as px | |
| import zipfile | |
| import json | |
| from cryptography.fernet import Fernet | |
| from streamlit_extras.stylable_container import stylable_container | |
| from typing import Optional | |
| from gliner import GLiNER | |
| from comet_ml import Experiment | |
| import hashlib | |
| # Set up environment variables | |
| os.environ['HF_HOME'] = '/tmp' | |
| st.markdown( | |
| """ | |
| <style> | |
| /* Main app background and text color */ | |
| .stApp { | |
| background-color: #F5FFFA; /* Mint cream, a very light green */ | |
| color: #000000; /* Black for the text */ | |
| } | |
| /* Sidebar background color */ | |
| .css-1d36184 { | |
| background-color: #B2F2B2; /* A pale green for the sidebar */ | |
| secondary-background-color: #B2F2B2; | |
| } | |
| /* Expander background color */ | |
| .streamlit-expanderContent { | |
| background-color: #F5FFFA; | |
| } | |
| /* Expander header background color */ | |
| .streamlit-expanderHeader { | |
| background-color: #F5FFFA; | |
| } | |
| /* Text Area background and text color */ | |
| .stTextArea textarea { | |
| background-color: #D4F4D4; /* A light, soft green */ | |
| color: #000000; /* Black for text */ | |
| } | |
| /* Button background and text color */ | |
| .stButton > button { | |
| background-color: #D4F4D4; | |
| color: #000000; | |
| } | |
| /* Warning box background and text color */ | |
| .stAlert.st-warning { | |
| background-color: #C8F0C8; /* A light green for the warning box */ | |
| color: #000000; | |
| } | |
| /* Success box background and text color */ | |
| .stAlert.st-success { | |
| background-color: #C8F0C8; /* A light green for the success box */ | |
| color: #000000; | |
| } | |
| </style> | |
| """, | |
| unsafe_allow_html=True | |
| ) | |
| # --- Page Configuration and UI Elements --- | |
| st.set_page_config(layout="wide", page_title="Named Entity Recognition App") | |
| st.subheader("HR.ai", divider="green") | |
| st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary") | |
| expander = st.expander("**Important notes**") | |
| expander.write("""**Named Entities:** This HR.ai predicts thirty-six (36) labels: "Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill" | |
| Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags. | |
| **How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data. | |
| **Usage Limits:** You can request results unlimited times for one (1) month. | |
| **Supported Languages:** English | |
| **Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. For any errors or inquiries, please contact us at info@nlpblogs.com""") | |
| with st.sidebar: | |
| st.write("Use the following code to embed the HR.ai web app on your website. Feel free to adjust the width and height values to fit your page.") | |
| code = ''' | |
| <iframe src="https://aiecosystem-hr-ai.hf.space" frameborder="0" width="850" height="450" ></iframe> | |
| ''' | |
| st.code(code, language="html") | |
| st.text("") | |
| st.text("") | |
| st.divider() | |
| st.subheader("π Ready to build your own AI Web App?", divider="green") | |
| st.link_button("AI Web App Builder", " https://nlpblogs.com/custom-web-app-development/", type="primary") | |
| # --- Comet ML Setup --- | |
| COMET_API_KEY = os.environ.get("COMET_API_KEY") | |
| COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE") | |
| COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME") | |
| comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME) | |
| if not comet_initialized: | |
| st.warning("Comet ML not initialized. Check environment variables.") | |
| # --- Label Definitions --- | |
| labels = ["Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"] | |
| # Create a mapping dictionary for labels to categories | |
| category_mapping = { | |
| "Contact Information": ["Email", "Phone_number", "Street_address", "City", "Country"], | |
| "Personal Details": ["Date_of_birth", "Marital_status", "Person"], | |
| "Employment Status": ["Full_time", "Part_time", "Contract", "Terminated", "Retired"], | |
| "Employment Information": ["Job_title", "Date", "Organization", "Role"], | |
| "Performance": ["Performance_score"], | |
| "Attendance": ["Leave_of_absence"], | |
| "Benefits": ["Retirement_plan", "Bonus", "Stock_options", "Health_insurance"], | |
| "Compensation": ["Pay_rate", "Annual_salary"], | |
| "Deductions": ["Tax", "Deductions"], | |
| "Recruitment & Sourcing": ["Interview_type", "Applicant", "Referral", "Job_board", "Recruiter"], | |
| "Legal & Compliance": ["Offer_letter", "Agreement"], | |
| "Professional_Development": ["Certification", "Skill"] | |
| } | |
| # --- Model Loading --- | |
| def load_ner_model(): | |
| """Loads the GLiNER model and caches it.""" | |
| try: | |
| return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints=labels) | |
| except Exception as e: | |
| st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}") | |
| st.stop() | |
| model = load_ner_model() | |
| # Flatten the mapping to a single dictionary | |
| reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list} | |
| # --- Text Input and Clear Button --- | |
| text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area') | |
| def clear_text(): | |
| """Clears the text area and session state.""" | |
| st.session_state['my_text_area'] = "" | |
| # Clear stored results | |
| if 'df' in st.session_state: | |
| del st.session_state.df | |
| if 'fig_treemap' in st.session_state: | |
| del st.session_state.fig_treemap | |
| st.button("Clear text", on_click=clear_text) | |
| # --- Results Section --- | |
| if st.button("Results"): | |
| start_time = time.time() | |
| if not text.strip(): | |
| st.warning("Please enter some text to extract entities.") | |
| else: | |
| with st.spinner("Extracting entities...", show_time=True): | |
| entities = model.predict_entities(text, labels) | |
| df = pd.DataFrame(entities) | |
| if not df.empty: | |
| df['category'] = df['label'].map(reverse_category_mapping) | |
| st.session_state.df = df # Store df in session state | |
| if comet_initialized: | |
| experiment = Experiment( | |
| api_key=COMET_API_KEY, | |
| workspace=COMET_WORKSPACE, | |
| project_name=COMET_PROJECT_NAME, | |
| ) | |
| experiment.log_parameter("input_text", text) | |
| experiment.log_table("predicted_entities", df) | |
| st.subheader("Grouped Entities by Category", divider="green") | |
| category_names = sorted(list(category_mapping.keys())) | |
| category_tabs = st.tabs(category_names) | |
| for i, category_name in enumerate(category_names): | |
| with category_tabs[i]: | |
| df_category_filtered = df[df['category'] == category_name] | |
| if not df_category_filtered.empty: | |
| st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True) | |
| else: | |
| st.info(f"No entities found for the '{category_name}' category.") | |
| with st.expander("See Glossary of tags"): | |
| st.write(''' | |
| - **text**: ['entity extracted from your text data'] | |
| - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity'] | |
| - **label**: ['label (tag) assigned to a given extracted entity'] | |
| - **category**: ['the high-level category for the label'] | |
| - **start**: ['index of the start of the corresponding entity'] | |
| - **end**: ['index of the end of the corresponding entity'] | |
| ''') | |
| else: | |
| st.warning("No entities were found in the provided text.") | |
| # Clear session state if no results found | |
| if 'df' in st.session_state: | |
| del st.session_state.df | |
| # --- Treemap Display Section --- | |
| if 'df' in st.session_state and not st.session_state.df.empty: | |
| st.divider() | |
| st.subheader("Tree map", divider="green") | |
| fig_treemap = px.treemap(st.session_state.df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category') | |
| fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA') | |
| st.plotly_chart(fig_treemap) | |
| # --- Question Answering Section --- | |
| def load_gliner_model(): | |
| """Initializes and caches the GLiNER model for QA.""" | |
| try: | |
| return GLiNER.from_pretrained("knowledgator/gliner-multitask-v1.0", device="cpu") | |
| except Exception as e: | |
| st.error(f"Error loading the GLiNER model: {e}") | |
| st.stop() | |
| qa_model = load_gliner_model() | |
| st.subheader("Question-Answering", divider="violet") | |
| if 'user_labels' not in st.session_state: | |
| st.session_state.user_labels = [] | |
| question_input = st.text_input("Ask wh-questions. **Wh-questions begin with what, when, where, who, whom, which, whose, why and how. We use them to ask for specific information.**") | |
| if st.button("Add Question"): | |
| if question_input: | |
| if question_input not in st.session_state.user_labels: | |
| st.session_state.user_labels.append(question_input) | |
| st.success(f"Added question: {question_input}") | |
| else: | |
| st.warning("This question has already been added.") | |
| else: | |
| st.warning("Please enter a question.") | |
| st.markdown("---") | |
| st.subheader("Record of Questions", divider="violet") | |
| if st.session_state.user_labels: | |
| for i, label in enumerate(st.session_state.user_labels): | |
| col_list, col_delete = st.columns([0.9, 0.1]) | |
| with col_list: | |
| st.write(f"- {label}", key=f"label_{i}") | |
| with col_delete: | |
| if st.button("Delete", key=f"delete_{i}"): | |
| st.session_state.user_labels.pop(i) | |
| st.rerun() | |
| else: | |
| st.info("No questions defined yet. Use the input above to add one.") | |
| st.divider() | |
| if st.button("Extract Answers"): | |
| if not text.strip(): | |
| st.warning("Please enter some text to analyze.") | |
| elif not st.session_state.user_labels: | |
| st.warning("Please define at least one question.") | |
| else: | |
| if comet_initialized: | |
| experiment = Experiment( | |
| api_key=COMET_API_KEY, | |
| workspace=COMET_WORKSPACE, | |
| project_name=COMET_PROJECT_NAME | |
| ) | |
| experiment.log_parameter("input_text_length", len(text)) | |
| experiment.log_parameter("defined_labels", st.session_state.user_labels) | |
| start_time = time.time() | |
| with st.spinner("Analyzing text...", show_time=True): | |
| try: | |
| entities = qa_model.predict_entities(text, st.session_state.user_labels) | |
| end_time = time.time() | |
| elapsed_time = end_time - start_time | |
| st.info(f"Processing took **{elapsed_time:.2f} seconds**.") | |
| if entities: | |
| df1 = pd.DataFrame(entities) | |
| df2 = df1[['label', 'text', 'score']] | |
| df = df2.rename(columns={'label': 'question', 'text': 'answer'}) | |
| st.subheader("Extracted Answers", divider="violet") | |
| st.dataframe(df, use_container_width=True) | |
| st.divider() | |
| dfa = pd.DataFrame( | |
| data={ | |
| 'Column Name': ['text', 'label', 'score', 'start', 'end', 'category'], | |
| 'Description': [ | |
| 'entity extracted from your text data', | |
| 'label (tag) assigned to a given extracted entity', | |
| 'accuracy score; how accurately a tag has been assigned to a given entity', | |
| 'index of the start of the corresponding entity', | |
| 'index of the end of the corresponding entity', | |
| 'the broader category the entity belongs to', | |
| ] | |
| } | |
| ) | |
| buf = io.BytesIO() | |
| with zipfile.ZipFile(buf, "w") as myzip: | |
| myzip.writestr("Summary of the results.csv", df.to_csv(index=False)) | |
| myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False)) | |
| with stylable_container( | |
| key="download_button", | |
| css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""", | |
| ): | |
| st.download_button( | |
| label="Download results and glossary (zip)", | |
| data=buf.getvalue(), | |
| file_name="nlpblogs_results.zip", | |
| mime="application/zip", | |
| ) | |
| else: | |
| st.warning("No answers were found for the provided questions.") | |
| except Exception as e: | |
| st.error(f"An error occurred during answer extraction: {e}") |