Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +10 -10
src/streamlit_app.py
CHANGED
|
@@ -82,10 +82,10 @@ expander.write("""
|
|
| 82 |
|
| 83 |
-Type or paste your text into the text area, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
|
| 84 |
-Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
| 85 |
-
-This HR.ai web app predicts thirty-seven (
|
| 86 |
|
| 87 |
|
| 88 |
-
**How to Use the
|
| 89 |
1. Type or paste your text into the text area, then press Ctrl + Enter.
|
| 90 |
2. Click the 'Add Question' button to add your question to the Record of Questions. You can manage your questions by deleting them one by one.
|
| 91 |
3. Click the 'Extract Answers' button to extract the answer to your question.
|
|
@@ -141,13 +141,13 @@ def load_gliner_model(model_name):
|
|
| 141 |
st.stop()
|
| 142 |
|
| 143 |
# --- HR_AI Model Labels and Mappings ---
|
| 144 |
-
labels = ["
|
| 145 |
|
| 146 |
category_mapping = {
|
| 147 |
"Contact Information": ["Email", "Phone_number", "Street_address", "City", "Country"],
|
| 148 |
"Personal Details": ["Date_of_birth", "Marital_status", "Person"],
|
| 149 |
"Employment Status": ["Full_time", "Part_time", "Contract", "Terminated", "Retired"],
|
| 150 |
-
"Employment Information": ["
|
| 151 |
"Performance": ["Performance_score"],
|
| 152 |
"Attendance": ["Leave_of_absence"],
|
| 153 |
"Benefits": ["Retirement_plan", "Bonus", "Stock_options", "Health_insurance"],
|
|
@@ -169,10 +169,10 @@ def get_stable_color(label):
|
|
| 169 |
return '#' + hex_dig[:6]
|
| 170 |
|
| 171 |
# --- Main App with Tabs ---
|
| 172 |
-
tab1, tab2 = st.tabs(["HR.ai", "
|
| 173 |
|
| 174 |
with tab1:
|
| 175 |
-
|
| 176 |
|
| 177 |
# Load model for this tab
|
| 178 |
model_hr = load_gliner_model("HR_AI")
|
|
@@ -266,7 +266,7 @@ with tab1:
|
|
| 266 |
st.download_button(
|
| 267 |
label="Download results and glossary (zip)",
|
| 268 |
data=buf.getvalue(),
|
| 269 |
-
file_name="
|
| 270 |
mime="application/zip",
|
| 271 |
)
|
| 272 |
|
|
@@ -283,7 +283,7 @@ with tab1:
|
|
| 283 |
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
|
| 284 |
|
| 285 |
with tab2:
|
| 286 |
-
|
| 287 |
|
| 288 |
# Load model for this tab
|
| 289 |
model_qa = load_gliner_model("InfoFinder")
|
|
@@ -295,7 +295,7 @@ with tab2:
|
|
| 295 |
|
| 296 |
st.button("Clear text", on_click=clear_text_qa, key="clear_qa")
|
| 297 |
|
| 298 |
-
st.subheader("Question-Answering", divider="
|
| 299 |
question_input = st.text_input("Ask wh-questions. **Wh-questions begin with what, when, where, who, whom, which, whose, why and how. We use them to ask for specific information.**")
|
| 300 |
|
| 301 |
if st.button("Add Question"):
|
|
@@ -363,7 +363,7 @@ with tab2:
|
|
| 363 |
st.download_button(
|
| 364 |
label="Download CSV",
|
| 365 |
data=csv_data,
|
| 366 |
-
file_name="
|
| 367 |
mime="text/csv",
|
| 368 |
)
|
| 369 |
|
|
|
|
| 82 |
|
| 83 |
-Type or paste your text into the text area, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
|
| 84 |
-Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
|
| 85 |
+
-This HR.ai web app predicts thirty-seven (36) labels: "Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"
|
| 86 |
|
| 87 |
|
| 88 |
+
**How to Use the Question-Answering feature:**
|
| 89 |
1. Type or paste your text into the text area, then press Ctrl + Enter.
|
| 90 |
2. Click the 'Add Question' button to add your question to the Record of Questions. You can manage your questions by deleting them one by one.
|
| 91 |
3. Click the 'Extract Answers' button to extract the answer to your question.
|
|
|
|
| 141 |
st.stop()
|
| 142 |
|
| 143 |
# --- HR_AI Model Labels and Mappings ---
|
| 144 |
+
labels = ["Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"]
|
| 145 |
|
| 146 |
category_mapping = {
|
| 147 |
"Contact Information": ["Email", "Phone_number", "Street_address", "City", "Country"],
|
| 148 |
"Personal Details": ["Date_of_birth", "Marital_status", "Person"],
|
| 149 |
"Employment Status": ["Full_time", "Part_time", "Contract", "Terminated", "Retired"],
|
| 150 |
+
"Employment Information": ["Job_title", "Date", "Organization", "Role"],
|
| 151 |
"Performance": ["Performance_score"],
|
| 152 |
"Attendance": ["Leave_of_absence"],
|
| 153 |
"Benefits": ["Retirement_plan", "Bonus", "Stock_options", "Health_insurance"],
|
|
|
|
| 169 |
return '#' + hex_dig[:6]
|
| 170 |
|
| 171 |
# --- Main App with Tabs ---
|
| 172 |
+
tab1, tab2 = st.tabs(["HR.ai", "Question-Answering"])
|
| 173 |
|
| 174 |
with tab1:
|
| 175 |
+
|
| 176 |
|
| 177 |
# Load model for this tab
|
| 178 |
model_hr = load_gliner_model("HR_AI")
|
|
|
|
| 266 |
st.download_button(
|
| 267 |
label="Download results and glossary (zip)",
|
| 268 |
data=buf.getvalue(),
|
| 269 |
+
file_name="nlpblogs_results.zip",
|
| 270 |
mime="application/zip",
|
| 271 |
)
|
| 272 |
|
|
|
|
| 283 |
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
|
| 284 |
|
| 285 |
with tab2:
|
| 286 |
+
|
| 287 |
|
| 288 |
# Load model for this tab
|
| 289 |
model_qa = load_gliner_model("InfoFinder")
|
|
|
|
| 295 |
|
| 296 |
st.button("Clear text", on_click=clear_text_qa, key="clear_qa")
|
| 297 |
|
| 298 |
+
st.subheader("Question-Answering", divider="green")
|
| 299 |
question_input = st.text_input("Ask wh-questions. **Wh-questions begin with what, when, where, who, whom, which, whose, why and how. We use them to ask for specific information.**")
|
| 300 |
|
| 301 |
if st.button("Add Question"):
|
|
|
|
| 363 |
st.download_button(
|
| 364 |
label="Download CSV",
|
| 365 |
data=csv_data,
|
| 366 |
+
file_name="nlpblogs_questions_answers.csv",
|
| 367 |
mime="text/csv",
|
| 368 |
)
|
| 369 |
|