Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +130 -120
src/streamlit_app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
os.environ['HF_HOME'] = '/tmp'
|
| 3 |
|
|
|
|
| 4 |
import time
|
| 5 |
import streamlit as st
|
| 6 |
import pandas as pd
|
|
@@ -13,6 +14,7 @@ from streamlit_extras.stylable_container import stylable_container
|
|
| 13 |
from typing import Optional
|
| 14 |
from gliner import GLiNER
|
| 15 |
from comet_ml import Experiment
|
|
|
|
| 16 |
|
| 17 |
st.markdown(
|
| 18 |
"""
|
|
@@ -187,126 +189,9 @@ if st.button("Results"):
|
|
| 187 |
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA')
|
| 188 |
st.plotly_chart(fig_treemap)
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
"""
|
| 194 |
-
Initializes and caches the GLiNER model.
|
| 195 |
-
This ensures the model is only loaded once, improving performance.
|
| 196 |
-
"""
|
| 197 |
-
try:
|
| 198 |
-
return GLiNER.from_pretrained("knowledgator/gliner-multitask-v1.0", device="cpu")
|
| 199 |
-
except Exception as e:
|
| 200 |
-
st.error(f"Error loading the GLiNER model: {e}")
|
| 201 |
-
st.stop()
|
| 202 |
-
|
| 203 |
-
# Load the model
|
| 204 |
-
model = load_gliner_model()
|
| 205 |
-
st.subheader("Question-Answering", divider="violet")
|
| 206 |
-
# Replaced two columns with a single text input
|
| 207 |
-
question_input = st.text_input("Ask wh-questions. **Wh-questions begin with what, when, where, who, whom, which, whose, why and how. We use them to ask for specific information.**")
|
| 208 |
-
|
| 209 |
-
if 'user_labels' not in st.session_state:
|
| 210 |
-
st.session_state.user_labels = []
|
| 211 |
-
|
| 212 |
-
if st.button("Add Question"):
|
| 213 |
-
if question_input:
|
| 214 |
-
if question_input not in st.session_state.user_labels:
|
| 215 |
-
st.session_state.user_labels.append(question_input)
|
| 216 |
-
st.success(f"Added question: {question_input}")
|
| 217 |
-
else:
|
| 218 |
-
st.warning("This question has already been added.")
|
| 219 |
-
else:
|
| 220 |
-
st.warning("Please enter a question.")
|
| 221 |
-
st.markdown("---")
|
| 222 |
-
st.subheader("Record of Questions", divider="violet")
|
| 223 |
-
|
| 224 |
-
if st.session_state.user_labels:
|
| 225 |
-
# Use enumerate to create a unique key for each item
|
| 226 |
-
for i, label in enumerate(st.session_state.user_labels):
|
| 227 |
-
col_list, col_delete = st.columns([0.9, 0.1])
|
| 228 |
-
with col_list:
|
| 229 |
-
st.write(f"- {label}", key=f"label_{i}")
|
| 230 |
-
with col_delete:
|
| 231 |
-
# Create a unique key for each button using the index
|
| 232 |
-
if st.button("Delete", key=f"delete_{i}"):
|
| 233 |
-
# Remove the label at the specific index
|
| 234 |
-
st.session_state.user_labels.pop(i)
|
| 235 |
-
# Rerun to update the UI
|
| 236 |
-
st.rerun()
|
| 237 |
-
else:
|
| 238 |
-
st.info("No questions defined yet. Use the input above to add one.")
|
| 239 |
-
|
| 240 |
-
st.divider()
|
| 241 |
-
|
| 242 |
-
# --- Main Processing Logic ---
|
| 243 |
-
if st.button("Extract Answers"):
|
| 244 |
-
if not text.strip():
|
| 245 |
-
st.warning("Please enter some text to analyze.")
|
| 246 |
-
elif not st.session_state.user_labels:
|
| 247 |
-
st.warning("Please define at least one question.")
|
| 248 |
-
else:
|
| 249 |
-
if comet_initialized:
|
| 250 |
-
experiment = Experiment(
|
| 251 |
-
api_key=COMET_API_KEY,
|
| 252 |
-
workspace=COMET_WORKSPACE,
|
| 253 |
-
project_name=COMET_PROJECT_NAME
|
| 254 |
-
)
|
| 255 |
-
experiment.log_parameter("input_text_length", len(text))
|
| 256 |
-
experiment.log_parameter("defined_labels", st.session_state.user_labels)
|
| 257 |
-
start_time = time.time()
|
| 258 |
-
with st.spinner("Analyzing text...", show_time=True):
|
| 259 |
-
try:
|
| 260 |
-
entities = model.predict_entities(text, st.session_state.user_labels)
|
| 261 |
-
end_time = time.time()
|
| 262 |
-
elapsed_time = end_time - start_time
|
| 263 |
-
st.info(f"Processing took **{elapsed_time:.2f} seconds**.")
|
| 264 |
-
|
| 265 |
-
if entities:
|
| 266 |
-
df1 = pd.DataFrame(entities)
|
| 267 |
-
df2 = df1[['label', 'text', 'score']]
|
| 268 |
-
df = df2.rename(columns={'label': 'question', 'text': 'answer'})
|
| 269 |
-
|
| 270 |
-
st.subheader("Extracted Answers", divider="violet")
|
| 271 |
-
st.dataframe(df, use_container_width=True)
|
| 272 |
-
st.divider()
|
| 273 |
-
|
| 274 |
-
dfa = pd.DataFrame(
|
| 275 |
-
data={
|
| 276 |
-
'Column Name': ['text', 'label', 'score', 'start', 'end', 'category'],
|
| 277 |
-
'Description': [
|
| 278 |
-
'entity extracted from your text data',
|
| 279 |
-
'label (tag) assigned to a given extracted entity',
|
| 280 |
-
'accuracy score; how accurately a tag has been assigned to a given entity',
|
| 281 |
-
'index of the start of the corresponding entity',
|
| 282 |
-
'index of the end of the corresponding entity',
|
| 283 |
-
'the broader category the entity belongs to',
|
| 284 |
-
]
|
| 285 |
-
}
|
| 286 |
-
)
|
| 287 |
-
buf = io.BytesIO()
|
| 288 |
-
with zipfile.ZipFile(buf, "w") as myzip:
|
| 289 |
-
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
| 290 |
-
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
| 291 |
-
|
| 292 |
-
with stylable_container(
|
| 293 |
-
key="download_button",
|
| 294 |
-
css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
|
| 295 |
-
):
|
| 296 |
-
st.download_button(
|
| 297 |
-
label="Download results and glossary (zip)",
|
| 298 |
-
data=buf.getvalue(),
|
| 299 |
-
file_name="nlpblogs_results.zip",
|
| 300 |
-
mime="application/zip",
|
| 301 |
-
)
|
| 302 |
-
|
| 303 |
-
if comet_initialized:
|
| 304 |
-
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
|
| 305 |
-
experiment.end()
|
| 306 |
-
else: # If df is empty
|
| 307 |
-
st.warning("No entities were found in the provided text.")
|
| 308 |
-
except Exception as e:
|
| 309 |
-
st.error(f"An error occurred during entity extraction: {e}")
|
| 310 |
|
| 311 |
else: # If df is empty from the first extraction
|
| 312 |
st.warning("No entities were found in the provided text.")
|
|
@@ -317,3 +202,128 @@ if st.button("Results"):
|
|
| 317 |
st.text("")
|
| 318 |
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
|
| 319 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
os.environ['HF_HOME'] = '/tmp'
|
| 3 |
|
| 4 |
+
|
| 5 |
import time
|
| 6 |
import streamlit as st
|
| 7 |
import pandas as pd
|
|
|
|
| 14 |
from typing import Optional
|
| 15 |
from gliner import GLiNER
|
| 16 |
from comet_ml import Experiment
|
| 17 |
+
import hashlib
|
| 18 |
|
| 19 |
st.markdown(
|
| 20 |
"""
|
|
|
|
| 189 |
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA')
|
| 190 |
st.plotly_chart(fig_treemap)
|
| 191 |
|
| 192 |
+
if comet_initialized:
|
| 193 |
+
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
|
| 194 |
+
experiment.end()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
else: # If df is empty from the first extraction
|
| 197 |
st.warning("No entities were found in the provided text.")
|
|
|
|
| 202 |
st.text("")
|
| 203 |
st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
|
| 204 |
|
| 205 |
+
# --- Question Answering Section (Moved outside the "Results" button) ---
|
| 206 |
+
# --- Model Loading and Caching ---
|
| 207 |
+
@st.cache_resource
|
| 208 |
+
def load_gliner_model():
|
| 209 |
+
"""
|
| 210 |
+
Initializes and caches the GLiNER model.
|
| 211 |
+
This ensures the model is only loaded once, improving performance.
|
| 212 |
+
"""
|
| 213 |
+
try:
|
| 214 |
+
return GLiNER.from_pretrained("knowledgator/gliner-multitask-v1.0", device="cpu")
|
| 215 |
+
except Exception as e:
|
| 216 |
+
st.error(f"Error loading the GLiNER model: {e}")
|
| 217 |
+
st.stop()
|
| 218 |
+
|
| 219 |
+
# Load the model
|
| 220 |
+
model = load_gliner_model()
|
| 221 |
+
st.subheader("Question-Answering", divider="violet")
|
| 222 |
+
# Replaced two columns with a single text input
|
| 223 |
+
question_input = st.text_input("Ask wh-questions. **Wh-questions begin with what, when, where, who, whom, which, whose, why and how. We use them to ask for specific information.**")
|
| 224 |
+
|
| 225 |
+
if 'user_labels' not in st.session_state:
|
| 226 |
+
st.session_state.user_labels = []
|
| 227 |
+
|
| 228 |
+
if st.button("Add Question"):
|
| 229 |
+
if question_input:
|
| 230 |
+
if question_input not in st.session_state.user_labels:
|
| 231 |
+
st.session_state.user_labels.append(question_input)
|
| 232 |
+
st.success(f"Added question: {question_input}")
|
| 233 |
+
else:
|
| 234 |
+
st.warning("This question has already been added.")
|
| 235 |
+
else:
|
| 236 |
+
st.warning("Please enter a question.")
|
| 237 |
+
|
| 238 |
+
st.markdown("---")
|
| 239 |
+
st.subheader("Record of Questions", divider="violet")
|
| 240 |
+
if st.session_state.user_labels:
|
| 241 |
+
# Use enumerate to create a unique key for each item
|
| 242 |
+
for i, label in enumerate(st.session_state.user_labels):
|
| 243 |
+
col_list, col_delete = st.columns([0.9, 0.1])
|
| 244 |
+
with col_list:
|
| 245 |
+
st.write(f"- {label}", key=f"label_{i}")
|
| 246 |
+
with col_delete:
|
| 247 |
+
# Create a unique key for each button using the index
|
| 248 |
+
if st.button("Delete", key=f"delete_{i}"):
|
| 249 |
+
# Remove the label at the specific index
|
| 250 |
+
st.session_state.user_labels.pop(i)
|
| 251 |
+
# Rerun to update the UI
|
| 252 |
+
st.rerun()
|
| 253 |
+
else:
|
| 254 |
+
st.info("No questions defined yet. Use the input above to add one.")
|
| 255 |
+
|
| 256 |
+
st.divider()
|
| 257 |
+
# --- Main Processing Logic ---
|
| 258 |
+
if st.button("Extract Answers"):
|
| 259 |
+
if not text.strip():
|
| 260 |
+
st.warning("Please enter some text to analyze.")
|
| 261 |
+
elif not st.session_state.user_labels:
|
| 262 |
+
st.warning("Please define at least one question.")
|
| 263 |
+
else:
|
| 264 |
+
if comet_initialized:
|
| 265 |
+
experiment = Experiment(
|
| 266 |
+
api_key=COMET_API_KEY,
|
| 267 |
+
workspace=COMET_WORKSPACE,
|
| 268 |
+
project_name=COMET_PROJECT_NAME
|
| 269 |
+
)
|
| 270 |
+
experiment.log_parameter("input_text_length", len(text))
|
| 271 |
+
experiment.log_parameter("defined_labels", st.session_state.user_labels)
|
| 272 |
+
start_time = time.time()
|
| 273 |
+
with st.spinner("Analyzing text...", show_time=True):
|
| 274 |
+
try:
|
| 275 |
+
entities = model.predict_entities(text, st.session_state.user_labels)
|
| 276 |
+
end_time = time.time()
|
| 277 |
+
elapsed_time = end_time - start_time
|
| 278 |
+
st.info(f"Processing took **{elapsed_time:.2f} seconds**.")
|
| 279 |
+
|
| 280 |
+
if entities:
|
| 281 |
+
df1 = pd.DataFrame(entities)
|
| 282 |
+
df2 = df1[['label', 'text', 'score']]
|
| 283 |
+
df = df2.rename(columns={'label': 'question', 'text': 'answer'})
|
| 284 |
+
|
| 285 |
+
st.subheader("Extracted Answers", divider="violet")
|
| 286 |
+
st.dataframe(df, use_container_width=True)
|
| 287 |
+
st.divider()
|
| 288 |
+
|
| 289 |
+
dfa = pd.DataFrame(
|
| 290 |
+
data={
|
| 291 |
+
'Column Name': ['text', 'label', 'score', 'start', 'end', 'category'],
|
| 292 |
+
'Description': [
|
| 293 |
+
'entity extracted from your text data',
|
| 294 |
+
'label (tag) assigned to a given extracted entity',
|
| 295 |
+
'accuracy score; how accurately a tag has been assigned to a given entity',
|
| 296 |
+
'index of the start of the corresponding entity',
|
| 297 |
+
'index of the end of the corresponding entity',
|
| 298 |
+
'the broader category the entity belongs to',
|
| 299 |
+
]
|
| 300 |
+
}
|
| 301 |
+
)
|
| 302 |
+
buf = io.BytesIO()
|
| 303 |
+
with zipfile.ZipFile(buf, "w") as myzip:
|
| 304 |
+
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
| 305 |
+
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
| 306 |
+
|
| 307 |
+
with stylable_container(
|
| 308 |
+
key="download_button",
|
| 309 |
+
css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
|
| 310 |
+
):
|
| 311 |
+
st.download_button(
|
| 312 |
+
label="Download results and glossary (zip)",
|
| 313 |
+
data=buf.getvalue(),
|
| 314 |
+
file_name="nlpblogs_results.zip",
|
| 315 |
+
mime="application/zip",
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
if comet_initialized:
|
| 319 |
+
# Assuming fig_treemap is still defined from the main NER run
|
| 320 |
+
# If not, you might need to re-generate it or handle the case where it's not available.
|
| 321 |
+
try:
|
| 322 |
+
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
|
| 323 |
+
except NameError:
|
| 324 |
+
pass # Or handle this gracefully
|
| 325 |
+
experiment.end()
|
| 326 |
+
else: # If df is empty
|
| 327 |
+
st.warning("No answers were found for the provided questions.")
|
| 328 |
+
except Exception as e:
|
| 329 |
+
st.error(f"An error occurred during answer extraction: {e}")
|