AIEcosystem commited on
Commit
67bfd5c
·
verified ·
1 Parent(s): 891e4b7

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +221 -119
src/streamlit_app.py CHANGED
@@ -1,27 +1,18 @@
1
  import os
2
  os.environ['HF_HOME'] = '/tmp'
3
-
4
-
5
  import time
6
- import hashlib
7
  import streamlit as st
8
  import pandas as pd
9
  import io
10
  import plotly.express as px
11
  import zipfile
 
 
12
  from streamlit_extras.stylable_container import stylable_container
13
  from typing import Optional
14
  from gliner import GLiNER
15
  from comet_ml import Experiment
16
 
17
- # Set HF_HOME environment variable
18
- os.environ['HF_HOME'] = '/tmp'
19
-
20
- # --- Page Configuration and UI Elements ---
21
- st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
22
- st.subheader("HR.ai", divider="green")
23
- st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
24
-
25
  st.markdown(
26
  """
27
  <style>
@@ -35,6 +26,7 @@ st.markdown(
35
  background-color: #B2F2B2; /* A pale green for the sidebar */
36
  secondary-background-color: #B2F2B2;
37
  }
 
38
  /* Expander background color */
39
  .streamlit-expanderContent {
40
  background-color: #F5FFFA;
@@ -68,37 +60,53 @@ st.markdown(
68
  unsafe_allow_html=True
69
  )
70
 
 
 
 
 
71
  expander = st.expander("**Important notes**")
72
- expander.write("""**Named Entities:** This HR.ai web app predicts thirty-six (36) labels: "Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
73
- **How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
74
- **Usage Limits:** You can request results unlimited times for one (1) month.
75
- **Supported Languages:** English
76
- **Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. For any errors or inquiries, please contact us at info@nlpblogs.com""")
 
 
77
 
78
  with st.sidebar:
79
  st.write("Use the following code to embed the HR.ai web app on your website. Feel free to adjust the width and height values to fit your page.")
80
  code = '''
81
- <iframe src="https://aiecosystem-hr-ai.hf.space" frameborder="0" width="850" height="450"></iframe>
 
 
 
 
 
82
  '''
83
  st.code(code, language="html")
84
  st.text("")
85
  st.text("")
86
  st.divider()
87
  st.subheader("🚀 Ready to build your own AI Web App?", divider="green")
88
- st.link_button("AI Web App Builder", "https://nlpblogs.com/custom-web-app-development/", type="primary")
89
 
90
  # --- Comet ML Setup ---
91
  COMET_API_KEY = os.environ.get("COMET_API_KEY")
92
  COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
93
  COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
94
  comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
 
95
  if not comet_initialized:
96
  st.warning("Comet ML not initialized. Check environment variables.")
97
 
98
  # --- Label Definitions ---
 
99
  labels = ["Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"]
100
 
 
 
101
  # Create a mapping dictionary for labels to categories
 
102
  category_mapping = {
103
  "Contact Information": ["Email", "Phone_number", "Street_address", "City", "Country"],
104
  "Personal Details": ["Date_of_birth", "Marital_status", "Person"],
@@ -111,9 +119,16 @@ category_mapping = {
111
  "Deductions": ["Tax", "Deductions"],
112
  "Recruitment & Sourcing": ["Interview_type", "Applicant", "Referral", "Job_board", "Recruiter"],
113
  "Legal & Compliance": ["Offer_letter", "Agreement"],
114
- "Professional_Development": ["Certification", "Skill"]
115
  }
116
 
 
 
 
 
 
 
 
117
  # --- Model Loading ---
118
  @st.cache_resource
119
  def load_ner_model():
@@ -123,17 +138,21 @@ def load_ner_model():
123
  except Exception as e:
124
  st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
125
  st.stop()
126
-
127
  model = load_ner_model()
 
 
128
  reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
129
 
130
  # --- Text Input and Clear Button ---
131
  text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area')
 
132
  def clear_text():
133
  """Clears the text area."""
134
  st.session_state['my_text_area'] = ""
 
135
  st.button("Clear text", on_click=clear_text)
136
 
 
137
  # --- Results Section ---
138
  if st.button("Results"):
139
  start_time = time.time()
@@ -141,109 +160,192 @@ if st.button("Results"):
141
  st.warning("Please enter some text to extract entities.")
142
  else:
143
  with st.spinner("Extracting entities...", show_time=True):
144
- try:
145
- entities = model.predict_entities(text, labels)
146
- df = pd.DataFrame(entities)
 
 
 
 
 
 
 
 
 
 
147
 
148
- if not df.empty:
149
- df['category'] = df['label'].map(reverse_category_mapping)
150
-
151
- if comet_initialized:
152
- experiment = Experiment(
153
- api_key=COMET_API_KEY,
154
- workspace=COMET_WORKSPACE,
155
- project_name=COMET_PROJECT_NAME,
156
- )
157
- experiment.log_parameter("input_text", text)
158
- experiment.log_table("predicted_entities", df)
159
-
160
- st.subheader("Grouped Entities by Category", divider="green")
161
- category_names = sorted(list(category_mapping.keys()))
162
- category_tabs = st.tabs(category_names)
163
-
164
- for i, category_name in enumerate(category_names):
165
- with category_tabs[i]:
166
- df_category_filtered = df[df['category'] == category_name]
167
- if not df_category_filtered.empty:
168
- st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
169
- else:
170
- st.info(f"No entities found for the '{category_name}' category.")
 
 
 
171
 
172
- with st.expander("See Glossary of tags"):
173
- st.write('''
174
- - **text**: ['entity extracted from your text data']
175
- - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
176
- - **label**: ['label (tag) assigned to a given extracted entity']
177
- - **start**: ['index of the start of the corresponding entity']
178
- - **end**: ['index of the end of the corresponding entity']
179
- ''')
180
-
181
- st.divider()
182
-
183
- # Tree map
184
- st.subheader("Tree map", divider="green")
185
- fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
186
- fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA')
187
- st.plotly_chart(fig_treemap)
188
-
189
- # Download Section
190
- st.divider()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191
 
192
- df_results = df[['label', 'text', 'score']]
193
- csv_data = df_results.to_csv(index=False).encode('utf-8')
 
 
194
 
195
- with stylable_container(
196
- key="download_csv_button",
197
- css_styles="""button { background-color: #D4F4D4; border: 1px solid black; padding: 5px; color: black; }""",
198
- ):
199
- st.download_button(
200
- label="Download results (CSV)",
201
- data=csv_data,
202
- file_name="nlpblogs_results.csv",
203
- mime="text/csv",
204
- key="download_csv"
205
- )
206
-
207
- dfa = pd.DataFrame(
208
- data={
209
- 'Column Name': ['text', 'label', 'score', 'start', 'end'],
210
- 'Description': [
211
- 'entity extracted from your text data',
212
- 'label (tag) assigned to a given extracted entity',
213
- 'accuracy score; how accurately a tag has been assigned to a given entity',
214
- 'index of the start of the corresponding entity',
215
- 'index of the end of the corresponding entity',
216
- ]
217
- }
 
 
 
 
 
 
 
 
 
 
 
218
  )
219
- buf = io.BytesIO()
220
- with zipfile.ZipFile(buf, "w") as myzip:
221
- myzip.writestr("Summary of the results.csv", df_results.to_csv(index=False))
222
- myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
223
-
224
- with stylable_container(
225
- key="download_zip_button",
226
- css_styles="""button { background-color: #D4F4D4; border: 1px solid black; padding: 5px; color: black; }""",
227
- ):
228
- st.download_button(
229
- label="Download results and glossary (zip)",
230
- data=buf.getvalue(),
231
- file_name="nlpblogs_results.zip",
232
- mime="application/zip",
233
- key="download_zip"
234
- )
235
-
236
- if comet_initialized:
237
- experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
238
- experiment.end()
239
- else:
240
- st.warning("No entities were found in the provided text.")
241
- except Exception as e:
242
- st.error(f"An error occurred during processing: {e}")
243
  if comet_initialized:
244
- experiment.log_text(f"Error: {e}")
245
  experiment.end()
246
-
247
- end_time = time.time()
248
- elapsed_time = end_time - start_time
249
- st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
 
 
 
 
 
1
  import os
2
  os.environ['HF_HOME'] = '/tmp'
 
 
3
  import time
 
4
  import streamlit as st
5
  import pandas as pd
6
  import io
7
  import plotly.express as px
8
  import zipfile
9
+ import json
10
+ from cryptography.fernet import Fernet
11
  from streamlit_extras.stylable_container import stylable_container
12
  from typing import Optional
13
  from gliner import GLiNER
14
  from comet_ml import Experiment
15
 
 
 
 
 
 
 
 
 
16
  st.markdown(
17
  """
18
  <style>
 
26
  background-color: #B2F2B2; /* A pale green for the sidebar */
27
  secondary-background-color: #B2F2B2;
28
  }
29
+
30
  /* Expander background color */
31
  .streamlit-expanderContent {
32
  background-color: #F5FFFA;
 
60
  unsafe_allow_html=True
61
  )
62
 
63
+ # --- Page Configuration and UI Elements ---
64
+ st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
65
+ st.subheader("HR.ai", divider="green")
66
+ st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
67
  expander = st.expander("**Important notes**")
68
+ expander.write("""**Named Entities:** This HR.ai predicts thirty-six (36) labels: "Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"
69
+ Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
70
+ **How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
71
+ **Usage Limits:** You can request results unlimited times for one (1) month.
72
+ **Supported Languages:** English
73
+ **Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
74
+ For any errors or inquiries, please contact us at info@nlpblogs.com""")
75
 
76
  with st.sidebar:
77
  st.write("Use the following code to embed the HR.ai web app on your website. Feel free to adjust the width and height values to fit your page.")
78
  code = '''
79
+ <iframe
80
+ src="https://aiecosystem-hr-ai.hf.space"
81
+ frameborder="0"
82
+ width="850"
83
+ height="450"
84
+ ></iframe>
85
  '''
86
  st.code(code, language="html")
87
  st.text("")
88
  st.text("")
89
  st.divider()
90
  st.subheader("🚀 Ready to build your own AI Web App?", divider="green")
91
+ st.link_button("AI Web App Builder", " https://nlpblogs.com/custom-web-app-development/", type="primary")
92
 
93
  # --- Comet ML Setup ---
94
  COMET_API_KEY = os.environ.get("COMET_API_KEY")
95
  COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
96
  COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
97
  comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
98
+
99
  if not comet_initialized:
100
  st.warning("Comet ML not initialized. Check environment variables.")
101
 
102
  # --- Label Definitions ---
103
+
104
  labels = ["Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"]
105
 
106
+
107
+
108
  # Create a mapping dictionary for labels to categories
109
+
110
  category_mapping = {
111
  "Contact Information": ["Email", "Phone_number", "Street_address", "City", "Country"],
112
  "Personal Details": ["Date_of_birth", "Marital_status", "Person"],
 
119
  "Deductions": ["Tax", "Deductions"],
120
  "Recruitment & Sourcing": ["Interview_type", "Applicant", "Referral", "Job_board", "Recruiter"],
121
  "Legal & Compliance": ["Offer_letter", "Agreement"],
122
+ "Professional_Development": [ "Certification", "Skill"]
123
  }
124
 
125
+
126
+
127
+
128
+
129
+
130
+
131
+
132
  # --- Model Loading ---
133
  @st.cache_resource
134
  def load_ner_model():
 
138
  except Exception as e:
139
  st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
140
  st.stop()
 
141
  model = load_ner_model()
142
+
143
+ # Flatten the mapping to a single dictionary
144
  reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
145
 
146
  # --- Text Input and Clear Button ---
147
  text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area')
148
+
149
  def clear_text():
150
  """Clears the text area."""
151
  st.session_state['my_text_area'] = ""
152
+
153
  st.button("Clear text", on_click=clear_text)
154
 
155
+
156
  # --- Results Section ---
157
  if st.button("Results"):
158
  start_time = time.time()
 
160
  st.warning("Please enter some text to extract entities.")
161
  else:
162
  with st.spinner("Extracting entities...", show_time=True):
163
+ entities = model.predict_entities(text, labels)
164
+ df = pd.DataFrame(entities)
165
+
166
+ if not df.empty:
167
+ df['category'] = df['label'].map(reverse_category_mapping)
168
+ if comet_initialized:
169
+ experiment = Experiment(
170
+ api_key=COMET_API_KEY,
171
+ workspace=COMET_WORKSPACE,
172
+ project_name=COMET_PROJECT_NAME,
173
+ )
174
+ experiment.log_parameter("input_text", text)
175
+ experiment.log_table("predicted_entities", df)
176
 
177
+ st.subheader("Grouped Entities by Category", divider = "green")
178
+
179
+ # Create tabs for each category
180
+ category_names = sorted(list(category_mapping.keys()))
181
+ category_tabs = st.tabs(category_names)
182
+
183
+ for i, category_name in enumerate(category_names):
184
+ with category_tabs[i]:
185
+ df_category_filtered = df[df['category'] == category_name]
186
+ if not df_category_filtered.empty:
187
+ st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
188
+ else:
189
+ st.info(f"No entities found for the '{category_name}' category.")
190
+
191
+
192
+
193
+ with st.expander("See Glossary of tags"):
194
+ st.write('''
195
+ - **text**: ['entity extracted from your text data']
196
+ - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
197
+ - **label**: ['label (tag) assigned to a given extracted entity']
198
+ - **category**: ['the high-level category for the label']
199
+ - **start**: ['index of the start of the corresponding entity']
200
+ - **end**: ['index of the end of the corresponding entity']
201
+ ''')
202
+ st.divider()
203
 
204
+ # Tree map
205
+ st.subheader("Tree map", divider = "green")
206
+ fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
207
+ fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA')
208
+ st.plotly_chart(fig_treemap)
209
+
210
+ # --- Model Loading and Caching ---
211
+ @st.cache_resource
212
+ def load_gliner_model():
213
+ """
214
+ Initializes and caches the GLiNER model.
215
+ This ensures the model is only loaded once, improving performance.
216
+ """
217
+ try:
218
+ return GLiNER.from_pretrained("knowledgator/gliner-multitask-v1.0", device="cpu")
219
+ except Exception as e:
220
+ st.error(f"Error loading the GLiNER model: {e}")
221
+ st.stop()
222
+
223
+ # Load the model
224
+ model = load_gliner_model()
225
+
226
+
227
+
228
+ st.subheader("Question-Answering", divider = "violet")
229
+
230
+ # Replaced two columns with a single text input
231
+ question_input = st.text_input("Ask wh-questions. **Wh-questions begin with what, when, where, who, whom, which, whose, why and how. We use them to ask for specific information.**")
232
+
233
+
234
+ if st.button("Add Question"):
235
+ if question_input:
236
+ if question_input not in st.session_state.user_labels:
237
+ st.session_state.user_labels.append(question_input)
238
+ st.success(f"Added question: {question_input}")
239
+ else:
240
+ st.warning("This question has already been added.")
241
+ else:
242
+ st.warning("Please enter a question.")
243
+ st.markdown("---")
244
+
245
+ st.subheader("Record of Questions", divider = "violet")
246
+
247
+ if st.session_state.user_labels:
248
+ # Use enumerate to create a unique key for each item
249
+ for i, label in enumerate(st.session_state.user_labels):
250
+ col_list, col_delete = st.columns([0.9, 0.1])
251
+ with col_list:
252
+ st.write(f"- {label}", key=f"label_{i}")
253
+ with col_delete:
254
+ # Create a unique key for each button using the index
255
+ if st.button("Delete", key=f"delete_{i}"):
256
+ # Remove the label at the specific index
257
+ st.session_state.user_labels.pop(i)
258
+ # Rerun to update the UI
259
+ st.rerun()
260
+ else:
261
+ st.info("No questions defined yet. Use the input above to add one.")
262
+
263
+ def get_stable_color(label):
264
+ """Generates a consistent hexadecimal color from a given string."""
265
+ hash_object = hashlib.sha1(label.encode('utf-8'))
266
+ hex_dig = hash_object.hexdigest()
267
+ return '#' + hex_dig[:6]
268
+
269
+ st.divider()
270
+
271
+ # --- Main Processing Logic ---
272
+ if st.button("Extract Answers"):
273
+ if not text.strip():
274
+ st.warning("Please enter some text to analyze.")
275
+ elif not st.session_state.user_labels:
276
+ st.warning("Please define at least one question.")
277
+ else:
278
+ if comet_initialized:
279
+ experiment = Experiment(
280
+ api_key=COMET_API_KEY,
281
+ workspace=COMET_WORKSPACE,
282
+ project_name=COMET_PROJECT_NAME
283
+ )
284
+ experiment.log_parameter("input_text_length", len(user_text))
285
+ experiment.log_parameter("defined_labels", st.session_state.user_labels)
286
+
287
+ start_time = time.time()
288
+ with st.spinner("Analyzing text...", show_time=True):
289
+ try:
290
+ entities = model.predict_entities(text, st.session_state.user_labels)
291
+ end_time = time.time()
292
+ elapsed_time = end_time - start_time
293
+ st.info(f"Processing took **{elapsed_time:.2f} seconds**.")
294
+
295
+ if entities:
296
+ df1 = pd.DataFrame(entities)
297
+ df2 = df1[['label', 'text', 'score']]
298
+ df = df2.rename(columns={'label': 'question', 'text': 'answer'})
299
 
300
+ st.subheader("Extracted Answers", divider = "violet")
301
+ st.dataframe(df, use_container_width=True)
302
+
303
+
304
 
305
+
306
+
307
+
308
+
309
+
310
+ st.divider()
311
+
312
+ dfa = pd.DataFrame(
313
+ data={
314
+ 'Column Name': ['text', 'label', 'score', 'start', 'end', 'category'],
315
+ 'Description': [
316
+ 'entity extracted from your text data',
317
+ 'label (tag) assigned to a given extracted entity',
318
+ 'accuracy score; how accurately a tag has been assigned to a given entity',
319
+ 'index of the start of the corresponding entity',
320
+ 'index of the end of the corresponding entity',
321
+ 'the broader category the entity belongs to',
322
+ ]
323
+ }
324
+ )
325
+ buf = io.BytesIO()
326
+ with zipfile.ZipFile(buf, "w") as myzip:
327
+ myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
328
+ myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
329
+
330
+ with stylable_container(
331
+ key="download_button",
332
+ css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
333
+ ):
334
+ st.download_button(
335
+ label="Download results and glossary (zip)",
336
+ data=buf.getvalue(),
337
+ file_name="nlpblogs_results.zip",
338
+ mime="application/zip",
339
  )
340
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341
  if comet_initialized:
342
+ experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
343
  experiment.end()
344
+ else: # If df is empty
345
+ st.warning("No entities were found in the provided text.")
346
+
347
+ end_time = time.time()
348
+ elapsed_time = end_time - start_time
349
+ st.text("")
350
+ st.text("")
351
+ st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")