AIEcosystem commited on
Commit
e24d490
·
verified ·
1 Parent(s): 0ceef79

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +105 -253
src/streamlit_app.py CHANGED
@@ -1,18 +1,24 @@
1
  import os
2
- os.environ['HF_HOME'] = '/tmp'
3
  import time
 
4
  import streamlit as st
5
  import pandas as pd
6
  import io
7
  import plotly.express as px
8
  import zipfile
9
- import json
10
- from cryptography.fernet import Fernet
11
  from streamlit_extras.stylable_container import stylable_container
12
  from typing import Optional
13
  from gliner import GLiNER
14
  from comet_ml import Experiment
15
 
 
 
 
 
 
 
 
 
16
  st.markdown(
17
  """
18
  <style>
@@ -26,7 +32,6 @@ st.markdown(
26
  background-color: #B2F2B2; /* A pale green for the sidebar */
27
  secondary-background-color: #B2F2B2;
28
  }
29
-
30
  /* Expander background color */
31
  .streamlit-expanderContent {
32
  background-color: #F5FFFA;
@@ -60,34 +65,17 @@ st.markdown(
60
  unsafe_allow_html=True
61
  )
62
 
63
- # --- Page Configuration and UI Elements ---
64
- st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
65
- st.subheader("HR.ai", divider="green")
66
- st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
67
  expander = st.expander("**Important notes**")
68
- expander.write("""**Named Entities:** This HR.ai web app predicts thirty-six (36) labels: "Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"
69
-
70
- Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
71
-
72
- **How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
73
-
74
- **Usage Limits:** You can request results unlimited times for one (1) month.
75
-
76
- **Supported Languages:** English
77
-
78
- **Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
79
-
80
- For any errors or inquiries, please contact us at info@nlpblogs.com""")
81
 
82
  with st.sidebar:
83
  st.write("Use the following code to embed the HR.ai web app on your website. Feel free to adjust the width and height values to fit your page.")
84
  code = '''
85
- <iframe
86
- src="https://aiecosystem-hr-ai.hf.space"
87
- frameborder="0"
88
- width="850"
89
- height="450"
90
- ></iframe>
91
  '''
92
  st.code(code, language="html")
93
  st.text("")
@@ -101,23 +89,18 @@ COMET_API_KEY = os.environ.get("COMET_API_KEY")
101
  COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
102
  COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
103
  comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
104
-
105
  if not comet_initialized:
106
  st.warning("Comet ML not initialized. Check environment variables.")
107
 
108
  # --- Label Definitions ---
109
-
110
- labels = ["Role_Date", "Job_Title_Date", "Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"]
111
-
112
-
113
 
114
  # Create a mapping dictionary for labels to categories
115
-
116
  category_mapping = {
117
  "Contact Information": ["Email", "Phone_number", "Street_address", "City", "Country"],
118
  "Personal Details": ["Date_of_birth", "Marital_status", "Person"],
119
  "Employment Status": ["Full_time", "Part_time", "Contract", "Terminated", "Retired"],
120
- "Employment Information" : ["Job_title", "Date", "Organization", "Role", "Role_Date", "Job_Title_Date"],
121
  "Performance": ["Performance_score"],
122
  "Attendance": ["Leave_of_absence"],
123
  "Benefits": ["Retirement_plan", "Bonus", "Stock_options", "Health_insurance"],
@@ -125,16 +108,9 @@ category_mapping = {
125
  "Deductions": ["Tax", "Deductions"],
126
  "Recruitment & Sourcing": ["Interview_type", "Applicant", "Referral", "Job_board", "Recruiter"],
127
  "Legal & Compliance": ["Offer_letter", "Agreement"],
128
- "Professional_Development": [ "Certification", "Skill"]
129
  }
130
 
131
-
132
-
133
-
134
-
135
-
136
-
137
-
138
  # --- Model Loading ---
139
  @st.cache_resource
140
  def load_ner_model():
@@ -144,21 +120,17 @@ def load_ner_model():
144
  except Exception as e:
145
  st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
146
  st.stop()
147
- model = load_ner_model()
148
 
149
- # Flatten the mapping to a single dictionary
150
  reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
151
 
152
  # --- Text Input and Clear Button ---
153
  text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area')
154
-
155
  def clear_text():
156
  """Clears the text area."""
157
  st.session_state['my_text_area'] = ""
158
-
159
  st.button("Clear text", on_click=clear_text)
160
 
161
-
162
  # --- Results Section ---
163
  if st.button("Results"):
164
  start_time = time.time()
@@ -166,229 +138,109 @@ if st.button("Results"):
166
  st.warning("Please enter some text to extract entities.")
167
  else:
168
  with st.spinner("Extracting entities...", show_time=True):
169
- entities = model.predict_entities(text, labels)
170
- df = pd.DataFrame(entities)
171
-
172
- if not df.empty:
173
- df['category'] = df['label'].map(reverse_category_mapping)
174
- if comet_initialized:
175
- experiment = Experiment(
176
- api_key=COMET_API_KEY,
177
- workspace=COMET_WORKSPACE,
178
- project_name=COMET_PROJECT_NAME,
179
- )
180
- experiment.log_parameter("input_text", text)
181
- experiment.log_table("predicted_entities", df)
182
-
183
- st.subheader("Grouped Entities by Category", divider = "green")
184
-
185
- # Create tabs for each category
186
- category_names = sorted(list(category_mapping.keys()))
187
- category_tabs = st.tabs(category_names)
188
-
189
- for i, category_name in enumerate(category_names):
190
- with category_tabs[i]:
191
- df_category_filtered = df[df['category'] == category_name]
192
- if not df_category_filtered.empty:
193
- st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
194
- else:
195
- st.info(f"No entities found for the '{category_name}' category.")
196
-
197
 
198
-
199
- with st.expander("See Glossary of tags"):
200
- st.write('''
201
- - **text**: ['entity extracted from your text data']
202
- - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
203
- - **label**: ['label (tag) assigned to a given extracted entity']
204
- - **start**: ['index of the start of the corresponding entity']
205
- - **end**: ['index of the end of the corresponding entity']
206
- ''')
207
- st.divider()
 
 
 
 
 
 
 
 
 
 
 
 
 
208
 
209
- # Tree map
210
- st.subheader("Tree map", divider = "green")
211
- fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
212
- fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA')
213
- st.plotly_chart(fig_treemap)
214
-
215
- @st.cache_resource
216
- def load_gliner_model():
217
- try:
218
- return GLiNER.from_pretrained("knowledgator/gliner-multitask-v1.0", device="cpu")
219
- except Exception as e:
220
- st.error(f"Error loading the GLiNER model: {e}")
221
- st.stop()
222
-
223
- model = load_gliner_model()
224
- st.subheader("Question-Answering", divider = "violet")
225
-
226
-
227
- question_input = st.text_input("Ask wh-questions. **Wh-questions begin with what, when, where, who, whom, which, whose, why and how. We use them to ask for specific information.**")
228
-
229
-
230
- if st.button("Add Question"):
231
- if question_input:
232
- if question_input not in st.session_state.user_labels:
233
- st.session_state.user_labels.append(question_input)
234
- st.success(f"Added question: {question_input}")
235
- else:
236
- st.warning("This question has already been added.")
237
- else:
238
- st.warning("Please enter a question.")
239
- st.markdown("---")
240
-
241
- st.subheader("Record of Questions", divider = "violet")
242
-
243
- if st.session_state.user_labels:
244
-
245
- for i, label in enumerate(st.session_state.user_labels):
246
- col_list, col_delete = st.columns([0.9, 0.1])
247
- with col_list:
248
- st.write(f"- {label}", key=f"label_{i}")
249
- with col_delete:
250
- # Create a unique key for each button using the index
251
- if st.button("Delete", key=f"delete_{i}"):
252
- # Remove the label at the specific index
253
- st.session_state.user_labels.pop(i)
254
- # Rerun to update the UI
255
- st.rerun()
256
- else:
257
- st.info("No questions defined yet. Use the input above to add one.")
258
-
259
- def get_stable_color(label):
260
- """Generates a consistent hexadecimal color from a given string."""
261
- hash_object = hashlib.sha1(label.encode('utf-8'))
262
- hex_dig = hash_object.hexdigest()
263
- return '#' + hex_dig[:6]
264
-
265
- st.divider()
266
-
267
- # --- Main Processing Logic ---
268
- if st.button("Extract Answers"):
269
- if not user_text.strip():
270
- st.warning("Please enter some text to analyze.")
271
- elif not st.session_state.user_labels:
272
- st.warning("Please define at least one question.")
273
- else:
274
- if comet_initialized:
275
- experiment = Experiment(
276
- api_key=COMET_API_KEY,
277
- workspace=COMET_WORKSPACE,
278
- project_name=COMET_PROJECT_NAME
279
- )
280
- experiment.log_parameter("input_text_length", len(user_text))
281
- experiment.log_parameter("defined_labels", st.session_state.user_labels)
282
-
283
- start_time = time.time()
284
- with st.spinner("Analyzing text...", show_time=True):
285
- try:
286
- entities = model.predict_entities(user_text, st.session_state.user_labels)
287
- end_time = time.time()
288
- elapsed_time = end_time - start_time
289
- st.info(f"Processing took **{elapsed_time:.2f} seconds**.")
290
-
291
- if entities:
292
- df1 = pd.DataFrame(entities)
293
- df2 = df1[['label', 'text', 'score']]
294
- df = df2.rename(columns={'label': 'question', 'text': 'answer'})
295
 
296
- st.subheader("Extracted Answers", divider = "violet")
297
- st.dataframe(df, use_container_width=True)
298
-
 
 
299
 
300
-
 
 
 
 
301
 
302
- csv_data = df.to_csv(index=False).encode('utf-8')
303
  with stylable_container(
304
- key="download_button",
305
- css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
306
  ):
307
  st.download_button(
308
- label="Download CSV",
309
  data=csv_data,
310
  file_name="nlpblogs_results.csv",
311
  mime="text/csv",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312
  )
313
-
314
- if comet_initialized:
315
- experiment.log_metric("processing_time_seconds", elapsed_time)
316
- experiment.log_table("predicted_entities", df)
317
- experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
318
 
319
- experiment.end()
320
- else:
321
- st.info("No answers were found in the text with the defined questions.")
322
  if comet_initialized:
 
323
  experiment.end()
 
 
324
  except Exception as e:
325
  st.error(f"An error occurred during processing: {e}")
326
- st.write(f"Error details: {e}")
327
  if comet_initialized:
328
  experiment.log_text(f"Error: {e}")
329
  experiment.end()
330
-
331
-
332
-
333
-
334
-
335
-
336
-
337
-
338
-
339
-
340
-
341
-
342
-
343
-
344
-
345
-
346
-
347
-
348
-
349
-
350
-
351
- # Download Section
352
- st.divider()
353
-
354
- dfa = pd.DataFrame(
355
- data={
356
- 'Column Name': ['text', 'label', 'score', 'start', 'end'],
357
- 'Description': [
358
- 'entity extracted from your text data',
359
- 'label (tag) assigned to a given extracted entity',
360
- 'accuracy score; how accurately a tag has been assigned to a given entity',
361
- 'index of the start of the corresponding entity',
362
- 'index of the end of the corresponding entity',
363
-
364
- ]
365
- }
366
- )
367
- buf = io.BytesIO()
368
- with zipfile.ZipFile(buf, "w") as myzip:
369
- myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
370
- myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
371
-
372
- with stylable_container(
373
- key="download_button",
374
- css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
375
- ):
376
- st.download_button(
377
- label="Download results and glossary (zip)",
378
- data=buf.getvalue(),
379
- file_name="nlpblogs_results.zip",
380
- mime="application/zip",
381
- )
382
-
383
- if comet_initialized:
384
- experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
385
- experiment.end()
386
- else: # If df is empty
387
- st.warning("No entities were found in the provided text.")
388
-
389
- end_time = time.time()
390
- elapsed_time = end_time - start_time
391
- st.text("")
392
- st.text("")
393
- st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")
394
-
 
1
  import os
 
2
  import time
3
+ import hashlib
4
  import streamlit as st
5
  import pandas as pd
6
  import io
7
  import plotly.express as px
8
  import zipfile
 
 
9
  from streamlit_extras.stylable_container import stylable_container
10
  from typing import Optional
11
  from gliner import GLiNER
12
  from comet_ml import Experiment
13
 
14
+ # Set HF_HOME environment variable
15
+ os.environ['HF_HOME'] = '/tmp'
16
+
17
+ # --- Page Configuration and UI Elements ---
18
+ st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
19
+ st.subheader("HR.ai", divider="green")
20
+ st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
21
+
22
  st.markdown(
23
  """
24
  <style>
 
32
  background-color: #B2F2B2; /* A pale green for the sidebar */
33
  secondary-background-color: #B2F2B2;
34
  }
 
35
  /* Expander background color */
36
  .streamlit-expanderContent {
37
  background-color: #F5FFFA;
 
65
  unsafe_allow_html=True
66
  )
67
 
 
 
 
 
68
  expander = st.expander("**Important notes**")
69
+ expander.write("""**Named Entities:** This HR.ai web app predicts thirty-six (36) labels: "Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
70
+ **How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
71
+ **Usage Limits:** You can request results unlimited times for one (1) month.
72
+ **Supported Languages:** English
73
+ **Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. For any errors or inquiries, please contact us at info@nlpblogs.com""")
 
 
 
 
 
 
 
 
74
 
75
  with st.sidebar:
76
  st.write("Use the following code to embed the HR.ai web app on your website. Feel free to adjust the width and height values to fit your page.")
77
  code = '''
78
+ <iframe src="https://aiecosystem-hr-ai.hf.space" frameborder="0" width="850" height="450"></iframe>
 
 
 
 
 
79
  '''
80
  st.code(code, language="html")
81
  st.text("")
 
89
  COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
90
  COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
91
  comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
 
92
  if not comet_initialized:
93
  st.warning("Comet ML not initialized. Check environment variables.")
94
 
95
  # --- Label Definitions ---
96
+ labels = ["Email", "Phone_number", "Street_address", "City", "Country", "Date_of_birth", "Marital_status", "Person", "Full_time", "Part_time", "Contract", "Terminated", "Retired", "Job_title", "Date", "Organization", "Role", "Performance_score", "Leave_of_absence", "Retirement_plan", "Bonus", "Stock_options", "Health_insurance", "Pay_rate", "Annual_salary", "Tax", "Deductions", "Interview_type", "Applicant", "Referral", "Job_board", "Recruiter", "Offer_letter", "Agreement", "Certification", "Skill"]
 
 
 
97
 
98
  # Create a mapping dictionary for labels to categories
 
99
  category_mapping = {
100
  "Contact Information": ["Email", "Phone_number", "Street_address", "City", "Country"],
101
  "Personal Details": ["Date_of_birth", "Marital_status", "Person"],
102
  "Employment Status": ["Full_time", "Part_time", "Contract", "Terminated", "Retired"],
103
+ "Employment Information" : ["Job_title", "Date", "Organization", "Role"],
104
  "Performance": ["Performance_score"],
105
  "Attendance": ["Leave_of_absence"],
106
  "Benefits": ["Retirement_plan", "Bonus", "Stock_options", "Health_insurance"],
 
108
  "Deductions": ["Tax", "Deductions"],
109
  "Recruitment & Sourcing": ["Interview_type", "Applicant", "Referral", "Job_board", "Recruiter"],
110
  "Legal & Compliance": ["Offer_letter", "Agreement"],
111
+ "Professional_Development": ["Certification", "Skill"]
112
  }
113
 
 
 
 
 
 
 
 
114
  # --- Model Loading ---
115
  @st.cache_resource
116
  def load_ner_model():
 
120
  except Exception as e:
121
  st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
122
  st.stop()
 
123
 
124
+ model = load_ner_model()
125
  reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
126
 
127
  # --- Text Input and Clear Button ---
128
  text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area')
 
129
  def clear_text():
130
  """Clears the text area."""
131
  st.session_state['my_text_area'] = ""
 
132
  st.button("Clear text", on_click=clear_text)
133
 
 
134
  # --- Results Section ---
135
  if st.button("Results"):
136
  start_time = time.time()
 
138
  st.warning("Please enter some text to extract entities.")
139
  else:
140
  with st.spinner("Extracting entities...", show_time=True):
141
+ try:
142
+ entities = model.predict_entities(text, labels)
143
+ df = pd.DataFrame(entities)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
 
145
+ if not df.empty:
146
+ df['category'] = df['label'].map(reverse_category_mapping)
147
+
148
+ if comet_initialized:
149
+ experiment = Experiment(
150
+ api_key=COMET_API_KEY,
151
+ workspace=COMET_WORKSPACE,
152
+ project_name=COMET_PROJECT_NAME,
153
+ )
154
+ experiment.log_parameter("input_text", text)
155
+ experiment.log_table("predicted_entities", df)
156
+
157
+ st.subheader("Grouped Entities by Category", divider="green")
158
+ category_names = sorted(list(category_mapping.keys()))
159
+ category_tabs = st.tabs(category_names)
160
+
161
+ for i, category_name in enumerate(category_names):
162
+ with category_tabs[i]:
163
+ df_category_filtered = df[df['category'] == category_name]
164
+ if not df_category_filtered.empty:
165
+ st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
166
+ else:
167
+ st.info(f"No entities found for the '{category_name}' category.")
168
 
169
+ with st.expander("See Glossary of tags"):
170
+ st.write('''
171
+ - **text**: ['entity extracted from your text data']
172
+ - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
173
+ - **label**: ['label (tag) assigned to a given extracted entity']
174
+ - **start**: ['index of the start of the corresponding entity']
175
+ - **end**: ['index of the end of the corresponding entity']
176
+ ''')
177
+
178
+ st.divider()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179
 
180
+ # Tree map
181
+ st.subheader("Tree map", divider="green")
182
+ fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
183
+ fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F5FFFA', plot_bgcolor='#F5FFFA')
184
+ st.plotly_chart(fig_treemap)
185
 
186
+ # Download Section
187
+ st.divider()
188
+
189
+ df_results = df[['label', 'text', 'score']]
190
+ csv_data = df_results.to_csv(index=False).encode('utf-8')
191
 
 
192
  with stylable_container(
193
+ key="download_csv_button",
194
+ css_styles="""button { background-color: #D4F4D4; border: 1px solid black; padding: 5px; color: black; }""",
195
  ):
196
  st.download_button(
197
+ label="Download results (CSV)",
198
  data=csv_data,
199
  file_name="nlpblogs_results.csv",
200
  mime="text/csv",
201
+ key="download_csv"
202
+ )
203
+
204
+ dfa = pd.DataFrame(
205
+ data={
206
+ 'Column Name': ['text', 'label', 'score', 'start', 'end'],
207
+ 'Description': [
208
+ 'entity extracted from your text data',
209
+ 'label (tag) assigned to a given extracted entity',
210
+ 'accuracy score; how accurately a tag has been assigned to a given entity',
211
+ 'index of the start of the corresponding entity',
212
+ 'index of the end of the corresponding entity',
213
+ ]
214
+ }
215
+ )
216
+ buf = io.BytesIO()
217
+ with zipfile.ZipFile(buf, "w") as myzip:
218
+ myzip.writestr("Summary of the results.csv", df_results.to_csv(index=False))
219
+ myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
220
+
221
+ with stylable_container(
222
+ key="download_zip_button",
223
+ css_styles="""button { background-color: #D4F4D4; border: 1px solid black; padding: 5px; color: black; }""",
224
+ ):
225
+ st.download_button(
226
+ label="Download results and glossary (zip)",
227
+ data=buf.getvalue(),
228
+ file_name="nlpblogs_results.zip",
229
+ mime="application/zip",
230
+ key="download_zip"
231
  )
 
 
 
 
 
232
 
 
 
 
233
  if comet_initialized:
234
+ experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
235
  experiment.end()
236
+ else:
237
+ st.warning("No entities were found in the provided text.")
238
  except Exception as e:
239
  st.error(f"An error occurred during processing: {e}")
 
240
  if comet_initialized:
241
  experiment.log_text(f"Error: {e}")
242
  experiment.end()
243
+
244
+ end_time = time.time()
245
+ elapsed_time = end_time - start_time
246
+ st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")