Spaces:
Runtime error
Runtime error
| # Copyright (c) 2022 NVIDIA CORPORATION. | |
| # Licensed under the MIT license. | |
| # Adapted from https://github.com/jik876/hifi-gan under the MIT license. | |
| # LICENSE is in incl_licenses directory. | |
| import warnings | |
| warnings.simplefilter(action='ignore', category=FutureWarning) | |
| import itertools | |
| import os | |
| import time | |
| import argparse | |
| import json | |
| import torch | |
| import torch.nn.functional as F | |
| from torch.utils.tensorboard import SummaryWriter | |
| from torch.utils.data import DistributedSampler, DataLoader | |
| import torch.multiprocessing as mp | |
| from torch.distributed import init_process_group | |
| from torch.nn.parallel import DistributedDataParallel | |
| from env import AttrDict, build_env | |
| from audiodataset import VocoderAudioDataset,get_transform,batch_mel_spectrogram | |
| from models import BigVGAN, MultiPeriodDiscriminator, MultiResolutionDiscriminator,\ | |
| feature_loss, generator_loss, discriminator_loss | |
| from utils import plot_spectrogram, plot_spectrogram_clipped, scan_checkpoint, load_checkpoint, save_checkpoint, save_audio | |
| from tqdm import tqdm | |
| import auraloss | |
| from pathlib import Path | |
| from tqdm import tqdm | |
| torch.backends.cudnn.benchmark = False | |
| def train(rank, a, h): | |
| if h.num_gpus > 1: | |
| # initialize distributed | |
| init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'], | |
| world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank) | |
| # set seed and device | |
| torch.cuda.manual_seed(h.seed) | |
| torch.cuda.set_device(rank) | |
| device = torch.device('cuda:{:d}'.format(rank)) | |
| # define BigVGAN generator | |
| generator = BigVGAN(h).to(device) | |
| print("Generator params: {}".format(sum(p.numel() for p in generator.parameters()))) | |
| # define discriminators. MPD is used by default | |
| mpd = MultiPeriodDiscriminator(h).to(device) | |
| print("Discriminator mpd params: {}".format(sum(p.numel() for p in mpd.parameters()))) | |
| # define additional discriminators. BigVGAN uses MRD as default | |
| mrd = MultiResolutionDiscriminator(h).to(device) # MultiResolutionDiscriminator perfroms better than MultiScaleDiscriminator | |
| print("Discriminator mrd params: {}".format(sum(p.numel() for p in mrd.parameters()))) | |
| # create or scan the latest checkpoint from checkpoints directory | |
| if rank == 0: | |
| print(generator) | |
| os.makedirs(a.checkpoint_path, exist_ok=True) | |
| print("checkpoints directory : ", a.checkpoint_path) | |
| if os.path.isdir(a.checkpoint_path): | |
| cp_g = scan_checkpoint(a.checkpoint_path, 'g_') | |
| cp_do = scan_checkpoint(a.checkpoint_path, 'do_') | |
| # load the latest checkpoint if exists | |
| steps = 0 | |
| if cp_g is None or cp_do is None: | |
| state_dict_do = None | |
| last_epoch = -1 | |
| else: | |
| state_dict_g = load_checkpoint(cp_g, device) | |
| state_dict_do = load_checkpoint(cp_do, device) | |
| generator.load_state_dict(state_dict_g['generator']) | |
| mpd.load_state_dict(state_dict_do['mpd']) | |
| mrd.load_state_dict(state_dict_do['mrd']) | |
| steps = state_dict_do['steps'] + 1 | |
| last_epoch = state_dict_do['epoch'] | |
| # initialize DDP, optimizers, and schedulers | |
| if h.num_gpus > 1: | |
| generator = DistributedDataParallel(generator, device_ids=[rank]).to(device) | |
| mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device) | |
| mrd = DistributedDataParallel(mrd, device_ids=[rank]).to(device) | |
| optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2]) | |
| optim_d = torch.optim.AdamW(itertools.chain(mrd.parameters(), mpd.parameters()), | |
| h.learning_rate, betas=[h.adam_b1, h.adam_b2]) | |
| if state_dict_do is not None: | |
| optim_g.load_state_dict(state_dict_do['optim_g']) | |
| optim_d.load_state_dict(state_dict_do['optim_d']) | |
| scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch) | |
| scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch) | |
| # define training and validation datasets | |
| trainset = VocoderAudioDataset(a.train_csv, a.segment_length,a.sr,a.nfft,num_mels=h.num_mels,augment=False)# 超分不要augment | |
| MELTRANSFORM = get_transform(sr=a.sr,nfft=a.nfft,num_mels=h.num_mels) | |
| train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None | |
| train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False, | |
| sampler=train_sampler, | |
| batch_size=h.batch_size, | |
| pin_memory=True, | |
| drop_last=True) | |
| if rank == 0: | |
| validset = VocoderAudioDataset(a.valid_csv,a.sr*10,a.sr,a.nfft,num_mels=h.num_mels,augment=False) | |
| validation_loader = DataLoader(validset, num_workers=1, shuffle=False, | |
| sampler=None, | |
| batch_size=1, | |
| pin_memory=True, | |
| drop_last=True) | |
| # Tensorboard logger | |
| sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs')) | |
| if a.save_audio: # also save audio to disk if --save_audio is set to True | |
| os.makedirs(os.path.join(a.checkpoint_path, 'samples'), exist_ok=True) | |
| # validation loop | |
| def validate(rank, a, h, loader): | |
| assert rank == 0, "validate should only run on rank=0" | |
| generator.eval() | |
| torch.cuda.empty_cache() | |
| MELTRANSFORM = get_transform(sr=a.sr,nfft=a.nfft,num_mels=h.num_mels) | |
| val_err_tot = 0 | |
| val_mrstft_tot = 0 | |
| # modules for evaluation metrics | |
| loss_mrstft = auraloss.freq.MultiResolutionSTFTLoss(device="cuda") | |
| if a.save_audio: # also save audio to disk if --save_audio is set to True | |
| os.makedirs(os.path.join(a.checkpoint_path, 'samples', 'gt'), exist_ok=True) | |
| os.makedirs(os.path.join(a.checkpoint_path, 'samples', '{:08d}'.format(steps)), exist_ok=True) | |
| with torch.no_grad(): | |
| # loop over validation set and compute metrics | |
| for j, batch in tqdm(enumerate(loader)): | |
| x, y, _, y_mel = batch# x is mel,y is wav | |
| y = y.to(device) | |
| if hasattr(generator, 'module'): | |
| y_g_hat = generator.module(x.to(device)) | |
| else: | |
| y_g_hat = generator(x.to(device)) | |
| y_mel = y_mel.to(device, non_blocking=True) | |
| mel_len = y_g_hat.shape[-1] // h.hop_size | |
| # print(f"h.hopsize{h.hop_size},mellen:{mel_len}") | |
| y_g_hat_mel = batch_mel_spectrogram(MELTRANSFORM,y_g_hat.squeeze(1),mel_len).to(device) | |
| val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item() | |
| # MRSTFT calculation | |
| # print(f'y_g_hat shape:{y_g_hat.shape},y shape:{y.shape}') | |
| val_mrstft_tot += loss_mrstft(y_g_hat.squeeze(1), y[:,:y_g_hat.shape[2]]).item() | |
| # log audio and figures to Tensorboard | |
| if j % a.eval_subsample == 0: # subsample every nth from validation set | |
| if steps >= 0: | |
| sw.add_audio('gt/y_{}'.format(j), y[0], steps, h.sr) | |
| if a.save_audio: # also save audio to disk if --save_audio is set to True | |
| save_audio(y[0], os.path.join(a.checkpoint_path, 'samples', 'gt', '{:04d}.wav'.format(j)), h.sr) | |
| sw.add_figure('gt/y_spec_{}'.format(j), plot_spectrogram(x[0]), steps) | |
| sw.add_audio('generated/y_hat_{}'.format(j), y_g_hat[0], steps, h.sr) | |
| if a.save_audio: # also save audio to disk if --save_audio is set to True | |
| save_audio(y_g_hat[0, 0], os.path.join(a.checkpoint_path, 'samples', '{:08d}'.format(steps), '{:04d}.wav'.format(j)), h.sr) | |
| # spectrogram of synthesized audio | |
| y_hat_spec = batch_mel_spectrogram(MELTRANSFORM,y_g_hat.squeeze(1),mel_len).to(device) | |
| sw.add_figure('generated/y_hat_spec_{}'.format(j), | |
| plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), steps) | |
| # visualization of spectrogram difference between GT and synthesized audio | |
| # difference higher than 1 is clipped for better visualization | |
| spec_delta = torch.clamp(torch.abs(x[0] - y_hat_spec.squeeze(0).cpu()), min=1e-6, max=1.) | |
| sw.add_figure('delta_dclip1/spec_{}'.format(j), | |
| plot_spectrogram_clipped(spec_delta.numpy(), clip_max=1.), steps) | |
| val_err = val_err_tot / (j + 1) | |
| val_mrstft = val_mrstft_tot / (j + 1) | |
| # log evaluation metrics to Tensorboard | |
| sw.add_scalar("validation/mel_spec_error", val_err, steps) | |
| sw.add_scalar("validation/mrstft", val_mrstft, steps) | |
| generator.train() | |
| # if the checkpoint is loaded, start with validation loop | |
| if steps != 0 and rank == 0 and not a.debug: | |
| validate(rank, a, h, validation_loader) | |
| # exit the script if --evaluate is set to True | |
| if a.evaluate: | |
| exit() | |
| # main training loop | |
| generator.train() | |
| mpd.train() | |
| mrd.train() | |
| for epoch in range(max(0, last_epoch), a.training_epochs): | |
| if rank == 0: | |
| start = time.time() | |
| print("Epoch: {}".format(epoch+1)) | |
| if h.num_gpus > 1: | |
| train_sampler.set_epoch(epoch) | |
| train_loader = tqdm(train_loader) if rank==0 else train_loader | |
| for i, batch in enumerate(train_loader): | |
| if rank == 0: | |
| start_b = time.time() | |
| x, y, _, y_mel = batch | |
| x = x.to(device, non_blocking=True) | |
| y = y.to(device, non_blocking=True) | |
| y_mel = y_mel.to(device, non_blocking=True) | |
| y = y.unsqueeze(1) | |
| y_g_hat = generator(x) | |
| mel_len = y_g_hat.shape[-1] // h.hop_size | |
| y_g_hat_mel = batch_mel_spectrogram(MELTRANSFORM,y_g_hat.squeeze(1),mel_len).to(device) | |
| optim_d.zero_grad() | |
| # MPD | |
| y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach()) | |
| loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g) | |
| # MRD | |
| y_ds_hat_r, y_ds_hat_g, _, _ = mrd(y, y_g_hat.detach()) | |
| loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g) | |
| loss_disc_all = loss_disc_s + loss_disc_f | |
| # whether to freeze D for initial training steps | |
| if steps >= a.freeze_step: | |
| loss_disc_all.backward() | |
| grad_norm_mpd = torch.nn.utils.clip_grad_norm_(mpd.parameters(), 1000.) | |
| grad_norm_mrd = torch.nn.utils.clip_grad_norm_(mrd.parameters(), 1000.) | |
| optim_d.step() | |
| else: | |
| print("WARNING: skipping D training for the first {} steps".format(a.freeze_step)) | |
| grad_norm_mpd = 0. | |
| grad_norm_mrd = 0. | |
| # generator | |
| optim_g.zero_grad() | |
| # L1 Mel-Spectrogram Loss | |
| # print(y_mel.shape,y_g_hat_mel.shape) | |
| loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45 | |
| # MPD loss | |
| y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat) | |
| loss_fm_f = feature_loss(fmap_f_r, fmap_f_g) | |
| loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g) | |
| # MRD loss | |
| y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = mrd(y, y_g_hat) | |
| loss_fm_s = feature_loss(fmap_s_r, fmap_s_g) | |
| loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g) | |
| if steps >= a.freeze_step: | |
| loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel | |
| else: | |
| print("WARNING: using regression loss only for G for the first {} steps".format(a.freeze_step)) | |
| loss_gen_all = loss_mel | |
| loss_gen_all.backward() | |
| grad_norm_g = torch.nn.utils.clip_grad_norm_(generator.parameters(), 1000.) | |
| optim_g.step() | |
| if rank == 0: | |
| # STDOUT logging | |
| if steps % a.stdout_interval == 0: | |
| with torch.no_grad(): | |
| mel_error = F.l1_loss(y_mel, y_g_hat_mel).item() | |
| print('Steps : {:d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}'. | |
| format(steps, loss_gen_all, mel_error, time.time() - start_b)) | |
| # checkpointing | |
| if steps % a.checkpoint_interval == 0 and steps != 0: | |
| checkpoint_path = "{}/g_{:08d}".format(a.checkpoint_path, steps) | |
| save_checkpoint(checkpoint_path, | |
| {'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()}) | |
| checkpoint_path = "{}/do_{:08d}".format(a.checkpoint_path, steps) | |
| save_checkpoint(checkpoint_path, | |
| {'mpd': (mpd.module if h.num_gpus > 1 else mpd).state_dict(), | |
| 'mrd': (mrd.module if h.num_gpus > 1 else mrd).state_dict(), | |
| 'optim_g': optim_g.state_dict(), | |
| 'optim_d': optim_d.state_dict(), | |
| 'steps': steps, | |
| 'epoch': epoch}) | |
| # Tensorboard summary logging | |
| if steps % a.summary_interval == 0: | |
| sw.add_scalar("training/gen_loss_total", loss_gen_all, steps) | |
| sw.add_scalar("training/mel_spec_error", mel_error, steps) | |
| sw.add_scalar("training/fm_loss_mpd", loss_fm_f.item(), steps) | |
| sw.add_scalar("training/gen_loss_mpd", loss_gen_f.item(), steps) | |
| sw.add_scalar("training/disc_loss_mpd", loss_disc_f.item(), steps) | |
| sw.add_scalar("training/grad_norm_mpd", grad_norm_mpd, steps) | |
| sw.add_scalar("training/fm_loss_mrd", loss_fm_s.item(), steps) | |
| sw.add_scalar("training/gen_loss_mrd", loss_gen_s.item(), steps) | |
| sw.add_scalar("training/disc_loss_mrd", loss_disc_s.item(), steps) | |
| sw.add_scalar("training/grad_norm_mrd", grad_norm_mrd, steps) | |
| sw.add_scalar("training/grad_norm_g", grad_norm_g, steps) | |
| sw.add_scalar("training/learning_rate_d", scheduler_d.get_last_lr()[0], steps) | |
| sw.add_scalar("training/learning_rate_g", scheduler_g.get_last_lr()[0], steps) | |
| sw.add_scalar("training/epoch", epoch+1, steps) | |
| # validation | |
| if steps % a.validation_interval == 0: | |
| # plot training input x so far used | |
| for i_x in range(x.shape[0]): | |
| sw.add_figure('training_input/x_{}'.format(i_x), plot_spectrogram(x[i_x].cpu()), steps) | |
| sw.add_audio('training_input/y_{}'.format(i_x), y[i_x][0], steps, h.sr) | |
| # seen and unseen speakers validation loops | |
| if not a.debug and steps != 0: | |
| validate(rank, a, h, validation_loader) | |
| steps += 1 | |
| scheduler_g.step() | |
| scheduler_d.step() | |
| if rank == 0: | |
| print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start))) | |
| def main(): | |
| print('Initializing Training Process..') | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--train_csv", default='filter_audioset_vocoder.tsv', type=Path) | |
| parser.add_argument("--valid_csv", default='/home/tiger/nfs/upsample_hifi/filter_audioset_low_high_val.tsv', type=Path) | |
| parser.add_argument("--sr", default=16000, type=int) | |
| parser.add_argument("--nfft", default=1024, type=int) | |
| parser.add_argument("--segment_length", default=8192, type=int) | |
| parser.add_argument('--group_name', default=None) | |
| parser.add_argument('--checkpoint_path', default='exp/bigvgan') | |
| parser.add_argument('--config', default='') | |
| parser.add_argument('--training_epochs', default=100000, type=int) | |
| parser.add_argument('--stdout_interval', default=5, type=int)# default 5 | |
| parser.add_argument('--checkpoint_interval', default=5000, type=int)# default 5000 | |
| parser.add_argument('--summary_interval', default=100, type=int)# default=100 | |
| parser.add_argument('--validation_interval', default=5000, type=int)# default=10000 | |
| parser.add_argument('--freeze_step', default=0, type=int, | |
| help='freeze D for the first specified steps. G only uses regression loss for these steps.') | |
| parser.add_argument('--fine_tuning', default=False, type=bool) | |
| parser.add_argument('--debug', default=False, type=bool, | |
| help="debug mode. skips validation loop throughout training") | |
| parser.add_argument('--evaluate', default=False, type=bool, | |
| help="only run evaluation from checkpoint and exit") | |
| parser.add_argument('--eval_subsample', default=5, type=int, | |
| help="subsampling during evaluation loop") | |
| parser.add_argument('--save_audio', default=False, type=bool, | |
| help="save audio of test set inference to disk") | |
| a = parser.parse_args() | |
| with open(a.config) as f: | |
| data = f.read() | |
| json_config = json.loads(data) | |
| h = AttrDict(json_config) | |
| h.update(a.__dict__) | |
| h.hop_size = h.nfft//4 | |
| build_env(a.config, 'config.json', a.checkpoint_path) # make log path | |
| torch.manual_seed(h.seed) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed(h.seed) | |
| h.num_gpus = torch.cuda.device_count() | |
| h.batch_size = int(h.batch_size / h.num_gpus) | |
| print('Batch size per GPU :', h.batch_size) | |
| else: | |
| pass | |
| if h.num_gpus > 1: | |
| mp.spawn(train, nprocs=h.num_gpus, args=(a, h,)) | |
| else: | |
| train(0, a, h) | |
| if __name__ == '__main__': | |
| main() | |