Spaces:
Runtime error
Runtime error
| # Adapted from https://github.com/jik876/hifi-gan under the MIT license. | |
| # LICENSE is in incl_licenses directory. | |
| from __future__ import absolute_import, division, print_function, unicode_literals | |
| import glob | |
| import os | |
| import numpy as np | |
| import argparse | |
| import json | |
| import torch | |
| from scipy.io.wavfile import write | |
| from env import AttrDict | |
| from meldataset import MAX_WAV_VALUE | |
| from models import BigVGAN as Generator | |
| h = None | |
| device = None | |
| torch.backends.cudnn.benchmark = False | |
| def load_checkpoint(filepath, device): | |
| assert os.path.isfile(filepath) | |
| print("Loading '{}'".format(filepath)) | |
| checkpoint_dict = torch.load(filepath, map_location=device) | |
| print("Complete.") | |
| return checkpoint_dict | |
| def scan_checkpoint(cp_dir, prefix): | |
| pattern = os.path.join(cp_dir, prefix + '*') | |
| cp_list = glob.glob(pattern) | |
| if len(cp_list) == 0: | |
| return '' | |
| return sorted(cp_list)[-1] | |
| def inference(a, h): | |
| generator = Generator(h).to(device) | |
| state_dict_g = load_checkpoint(a.checkpoint_file, device) | |
| generator.load_state_dict(state_dict_g['generator']) | |
| filelist = os.listdir(a.input_mels_dir) | |
| os.makedirs(a.output_dir, exist_ok=True) | |
| generator.eval() | |
| generator.remove_weight_norm() | |
| with torch.no_grad(): | |
| for i, filname in enumerate(filelist): | |
| # load the mel spectrogram in .npy format | |
| x = np.load(os.path.join(a.input_mels_dir, filname)) | |
| x = torch.FloatTensor(x).to(device) | |
| if len(x.shape) == 2: | |
| x = x.unsqueeze(0) | |
| y_g_hat = generator(x) | |
| audio = y_g_hat.squeeze() | |
| audio = audio * MAX_WAV_VALUE | |
| audio = audio.cpu().numpy().astype('int16') | |
| output_file = os.path.join(a.output_dir, os.path.splitext(filname)[0] + '_generated_e2e.wav') | |
| write(output_file, h.sampling_rate, audio) | |
| print(output_file) | |
| def main(): | |
| print('Initializing Inference Process..') | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--input_mels_dir', default='test_mel_files') | |
| parser.add_argument('--output_dir', default='generated_files_from_mel') | |
| parser.add_argument('--checkpoint_file', required=True) | |
| a = parser.parse_args() | |
| config_file = os.path.join(os.path.split(a.checkpoint_file)[0], 'config.json') | |
| with open(config_file) as f: | |
| data = f.read() | |
| global h | |
| json_config = json.loads(data) | |
| h = AttrDict(json_config) | |
| torch.manual_seed(h.seed) | |
| global device | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed(h.seed) | |
| device = torch.device('cuda') | |
| else: | |
| device = torch.device('cpu') | |
| inference(a, h) | |
| if __name__ == '__main__': | |
| main() | |