Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,44 +1,148 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse, os, sys, glob
|
| 2 |
+
import pathlib
|
| 3 |
+
directory = pathlib.Path(os.getcwd())
|
| 4 |
+
print(directory)
|
| 5 |
+
sys.path.append(str(directory))
|
| 6 |
+
import torch
|
| 7 |
+
import numpy as np
|
| 8 |
+
from omegaconf import OmegaConf
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from tqdm import tqdm, trange
|
| 11 |
+
from ldm.util import instantiate_from_config
|
| 12 |
+
from ldm.models.diffusion.scheduling_lcm import LCMSampler
|
| 13 |
+
from ldm.models.diffusion.plms import PLMSSampler
|
| 14 |
+
import pandas as pd
|
| 15 |
+
from torch.utils.data import DataLoader
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
+
from icecream import ic
|
| 18 |
+
from pathlib import Path
|
| 19 |
+
import soundfile as sf
|
| 20 |
+
import yaml
|
| 21 |
+
import datetime
|
| 22 |
+
from vocoder.bigvgan.models import VocoderBigVGAN
|
| 23 |
+
import soundfile
|
| 24 |
+
# from pytorch_memlab import LineProfiler,profile
|
| 25 |
+
import gradio
|
| 26 |
+
|
| 27 |
+
def load_model_from_config(config, ckpt = None, verbose=True):
|
| 28 |
+
model = instantiate_from_config(config.model)
|
| 29 |
+
if ckpt:
|
| 30 |
+
print(f"Loading model from {ckpt}")
|
| 31 |
+
pl_sd = torch.load(ckpt, map_location="cpu")
|
| 32 |
+
sd = pl_sd["state_dict"]
|
| 33 |
+
|
| 34 |
+
m, u = model.load_state_dict(sd, strict=False)
|
| 35 |
+
if len(m) > 0 and verbose:
|
| 36 |
+
print("missing keys:")
|
| 37 |
+
print(m)
|
| 38 |
+
if len(u) > 0 and verbose:
|
| 39 |
+
print("unexpected keys:")
|
| 40 |
+
print(u)
|
| 41 |
+
else:
|
| 42 |
+
print(f"Note chat no ckpt is loaded !!!")
|
| 43 |
+
|
| 44 |
+
model.cuda()
|
| 45 |
+
model.eval()
|
| 46 |
+
return model
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class GenSamples:
|
| 52 |
+
def __init__(self,sampler,model,outpath,vocoder = None,save_mel = True,save_wav = True, original_inference_steps=None) -> None:
|
| 53 |
+
self.sampler = sampler
|
| 54 |
+
self.model = model
|
| 55 |
+
self.outpath = outpath
|
| 56 |
+
if save_wav:
|
| 57 |
+
assert vocoder is not None
|
| 58 |
+
self.vocoder = vocoder
|
| 59 |
+
self.save_mel = save_mel
|
| 60 |
+
self.save_wav = save_wav
|
| 61 |
+
self.channel_dim = self.model.channels
|
| 62 |
+
self.original_inference_steps = original_inference_steps
|
| 63 |
+
|
| 64 |
+
def gen_test_sample(self,prompt,mel_name = None,wav_name = None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'}
|
| 65 |
+
uc = None
|
| 66 |
+
record_dicts = []
|
| 67 |
+
# if os.path.exists(os.path.join(self.outpath,mel_name+f'_0.npy')):
|
| 68 |
+
# return record_dicts
|
| 69 |
+
emptycap = {'ori_caption':1*[""],'struct_caption':1*[""]}
|
| 70 |
+
uc = self.model.get_learned_conditioning(emptycap)
|
| 71 |
+
|
| 72 |
+
for n in range(1):# trange(self.opt.n_iter, desc="Sampling"):
|
| 73 |
+
for k,v in prompt.items():
|
| 74 |
+
prompt[k] = 1 * [v]
|
| 75 |
+
c = self.model.get_learned_conditioning(prompt)# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
|
| 76 |
+
if self.channel_dim>0:
|
| 77 |
+
shape = [self.channel_dim, 20, 312] # (z_dim, 80//2^x, 848//2^x)
|
| 78 |
+
else:
|
| 79 |
+
shape = [20, 312]
|
| 80 |
+
samples_ddim, _ = self.sampler.sample(S=2,
|
| 81 |
+
conditioning=c,
|
| 82 |
+
batch_size=1,
|
| 83 |
+
shape=shape,
|
| 84 |
+
verbose=False,
|
| 85 |
+
guidance_scale=5,
|
| 86 |
+
original_inference_steps=self.original_inference_steps
|
| 87 |
+
)
|
| 88 |
+
x_samples_ddim = self.model.decode_first_stage(samples_ddim)
|
| 89 |
+
for idx,spec in enumerate(x_samples_ddim):
|
| 90 |
+
spec = spec.squeeze(0).cpu().numpy()
|
| 91 |
+
record_dict = {'caption':prompt['ori_caption'][0]}
|
| 92 |
+
if self.save_mel:
|
| 93 |
+
mel_path = os.path.join(self.outpath,mel_name+f'_{idx}.npy')
|
| 94 |
+
np.save(mel_path,spec)
|
| 95 |
+
record_dict['mel_path'] = mel_path
|
| 96 |
+
if self.save_wav:
|
| 97 |
+
wav = self.vocoder.vocode(spec)
|
| 98 |
+
wav_path = os.path.join(self.outpath,wav_name+f'_{idx}.wav')
|
| 99 |
+
soundfile.write(wav_path, wav, 16000)
|
| 100 |
+
record_dict['audio_path'] = wav_path
|
| 101 |
+
record_dicts.append(record_dict)
|
| 102 |
+
return record_dicts
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def infer(ori_prompt):
|
| 106 |
+
|
| 107 |
+
prompt = dict(ori_caption=ori_prompt,struct_caption=f'<{ori_prompt}& all>')
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
config = OmegaConf.load("configs/audiolcm.yaml")
|
| 111 |
+
|
| 112 |
+
# print("-------quick debug no load ckpt---------")
|
| 113 |
+
# model = instantiate_from_config(config['model'])# for quick debug
|
| 114 |
+
model = load_model_from_config(config, "./model/000184.ckpt")
|
| 115 |
+
|
| 116 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 117 |
+
model = model.to(device)
|
| 118 |
+
|
| 119 |
+
sampler = LCMSampler(model)
|
| 120 |
+
|
| 121 |
+
os.makedirs("results/test", exist_ok=True)
|
| 122 |
+
|
| 123 |
+
vocoder = VocoderBigVGAN("./model/vocoder",device)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
generator = GenSamples(sampler,model,"results/test",vocoder,save_mel = False,save_wav = True, original_inference_steps=config.model.params.num_ddim_timesteps)
|
| 127 |
+
csv_dicts = []
|
| 128 |
+
|
| 129 |
+
with torch.no_grad():
|
| 130 |
+
with model.ema_scope():
|
| 131 |
+
wav_name = f'{prompt.strip().replace(" ", "-")}'
|
| 132 |
+
generator.gen_test_sample(prompt,wav_name=wav_name)
|
| 133 |
+
|
| 134 |
+
print(f"Your samples are ready and waiting four you here: \nresults/test \nEnjoy.")
|
| 135 |
+
return "results/test/"+wav_name+"_0.wav"
|
| 136 |
+
|
| 137 |
+
def my_inference_function(prompt_oir):
|
| 138 |
+
file_path = infer(prompt_oir)
|
| 139 |
+
return file_path
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
gradio_interface = gradio.Interface(
|
| 144 |
+
fn = my_inference_function,
|
| 145 |
+
inputs = "text",
|
| 146 |
+
outputs = "audio"
|
| 147 |
+
)
|
| 148 |
+
gradio_interface.launch()
|