Spaces:
Sleeping
Sleeping
| import { HF_ACCESS_TOKEN, MODELS, OLD_MODELS } from "$env/static/private"; | |
| import type { | |
| ChatTemplateInput, | |
| WebSearchQueryTemplateInput, | |
| WebSearchSummaryTemplateInput, | |
| } from "$lib/types/Template"; | |
| import { compileTemplate } from "$lib/utils/template"; | |
| import { z } from "zod"; | |
| type Optional<T, K extends keyof T> = Pick<Partial<T>, K> & Omit<T, K>; | |
| const sagemakerEndpoint = z.object({ | |
| host: z.literal("sagemaker"), | |
| url: z.string().url(), | |
| accessKey: z.string().min(1), | |
| secretKey: z.string().min(1), | |
| sessionToken: z.string().optional(), | |
| }); | |
| const tgiEndpoint = z.object({ | |
| host: z.union([z.literal("tgi"), z.undefined()]), | |
| url: z.string().url(), | |
| authorization: z.string().min(1).default(`Bearer ${HF_ACCESS_TOKEN}`), | |
| }); | |
| const localEndpoint = z.object({ | |
| host: z.union([z.literal("local"), z.undefined()]), | |
| model: z.string(), | |
| url: z.string().url(), | |
| authorization: z.string().min(1).default(`Bearer ${HF_ACCESS_TOKEN}`), | |
| }); | |
| const commonEndpoint = z.object({ | |
| weight: z.number().int().positive().default(1), | |
| }); | |
| const endpoint = z.lazy(() => | |
| z.union([ | |
| sagemakerEndpoint.merge(commonEndpoint), | |
| tgiEndpoint.merge(commonEndpoint), | |
| localEndpoint.merge(commonEndpoint), | |
| ]) | |
| ); | |
| const combinedEndpoint = endpoint.transform((data) => { | |
| if (data.host === "tgi" || data.host === undefined) { | |
| return tgiEndpoint.merge(commonEndpoint).parse(data); | |
| } else if (data.host === "sagemaker") { | |
| return sagemakerEndpoint.merge(commonEndpoint).parse(data); | |
| } else if (data.host === "local") { | |
| return localEndpoint.merge(commonEndpoint).parse(data); | |
| } else { | |
| throw new Error(`Invalid host: ${data.host}`); | |
| } | |
| }); | |
| const modelsRaw = z | |
| .array( | |
| z.object({ | |
| /** Used as an identifier in DB */ | |
| id: z.string().optional(), | |
| /** Used to link to the model page, and for inference */ | |
| name: z.string().min(1), | |
| displayName: z.string().min(1).optional(), | |
| description: z.string().min(1).optional(), | |
| is_local: z.boolean().optional(), | |
| is_code: z.boolean().optional(), | |
| is_phi: z.boolean().optional(), | |
| type: z.string().min(1), | |
| websiteUrl: z.string().url().optional(), | |
| modelUrl: z.string().url().optional(), | |
| datasetName: z.string().min(1).optional(), | |
| datasetUrl: z.string().url().optional(), | |
| userMessageToken: z.string().default(""), | |
| userMessageEndToken: z.string().default(""), | |
| assistantMessageToken: z.string().default(""), | |
| assistantMessageEndToken: z.string().default(""), | |
| messageEndToken: z.string().default(""), | |
| preprompt: z.string().default(""), | |
| prepromptUrl: z.string().url().optional(), | |
| chatPromptTemplate: z | |
| .string() | |
| .default( | |
| "{{preprompt}}" + | |
| "{{#each messages}}" + | |
| "{{#ifUser}}{{@root.userMessageToken}}{{content}}{{@root.userMessageEndToken}}{{/ifUser}}" + | |
| "{{#ifAssistant}}{{@root.assistantMessageToken}}{{content}}{{@root.assistantMessageEndToken}}{{/ifAssistant}}" + | |
| "{{/each}}" + | |
| "{{assistantMessageToken}}" | |
| ), | |
| webSearchSummaryPromptTemplate: z | |
| .string() | |
| .default( | |
| "{{userMessageToken}}{{answer}}{{userMessageEndToken}}" + | |
| "{{userMessageToken}}" + | |
| "The text above should be summarized to best answer the query: {{query}}." + | |
| "{{userMessageEndToken}}" + | |
| "{{assistantMessageToken}}Summary: " | |
| ), | |
| webSearchQueryPromptTemplate: z | |
| .string() | |
| .default( | |
| "{{userMessageToken}}" + | |
| "The following messages were written by a user, trying to answer a question." + | |
| "{{userMessageEndToken}}" + | |
| "{{#each messages}}" + | |
| "{{#ifUser}}{{@root.userMessageToken}}{{content}}{{@root.userMessageEndToken}}{{/ifUser}}" + | |
| "{{/each}}" + | |
| "{{userMessageToken}}" + | |
| "What plain-text english sentence would you input into Google to answer the last question? Answer with a short (10 words max) simple sentence." + | |
| "{{userMessageEndToken}}" + | |
| "{{assistantMessageToken}}Query: " | |
| ), | |
| promptExamples: z | |
| .array( | |
| z.object({ | |
| title: z.string().min(1), | |
| prompt: z.string().min(1), | |
| }) | |
| ) | |
| .optional(), | |
| endpoints: z.array(combinedEndpoint).optional(), | |
| parameters: z | |
| .object({ | |
| temperature: z.number().min(0).max(1), | |
| truncate: z.number().int().positive(), | |
| max_new_tokens: z.number().int().positive(), | |
| stop: z.array(z.string()).optional(), | |
| }) | |
| .passthrough() | |
| .optional(), | |
| }) | |
| ) | |
| .parse(JSON.parse(MODELS)); | |
| export const models = await Promise.all( | |
| modelsRaw.map(async (m) => ({ | |
| ...m, | |
| userMessageEndToken: m?.userMessageEndToken || m?.messageEndToken, | |
| assistantMessageEndToken: m?.assistantMessageEndToken || m?.messageEndToken, | |
| chatPromptRender: compileTemplate<ChatTemplateInput>(m.chatPromptTemplate, m), | |
| webSearchSummaryPromptRender: compileTemplate<WebSearchSummaryTemplateInput>( | |
| m.webSearchSummaryPromptTemplate, | |
| m | |
| ), | |
| webSearchQueryPromptRender: compileTemplate<WebSearchQueryTemplateInput>( | |
| m.webSearchQueryPromptTemplate, | |
| m | |
| ), | |
| id: m.id || m.name, | |
| displayName: m.displayName || m.name, | |
| preprompt: m.prepromptUrl ? await fetch(m.prepromptUrl).then((r) => r.text()) : m.preprompt, | |
| })) | |
| ); | |
| // Models that have been deprecated | |
| export const oldModels = OLD_MODELS | |
| ? z | |
| .array( | |
| z.object({ | |
| id: z.string().optional(), | |
| name: z.string().min(1), | |
| displayName: z.string().min(1).optional(), | |
| }) | |
| ) | |
| .parse(JSON.parse(OLD_MODELS)) | |
| .map((m) => ({ ...m, id: m.id || m.name, displayName: m.displayName || m.name })) | |
| : []; | |
| export type BackendModel = Optional<(typeof models)[0], "preprompt">; | |
| export type Endpoint = z.infer<typeof endpoint>; | |
| export const defaultModel = models[0]; | |
| export const validateModel = (_models: BackendModel[]) => { | |
| // Zod enum function requires 2 parameters | |
| return z.enum([_models[0].id, ..._models.slice(1).map((m) => m.id)]); | |
| }; | |