|
|
import torch |
|
|
import gradio as gr |
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, MarianMTModel, MarianTokenizer |
|
|
|
|
|
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
MODEL_OPTIONS = [ |
|
|
"Helsinki-NLP (Tira ondo)", |
|
|
"FLAN-T5-base (Google gaizki xamar)" |
|
|
] |
|
|
|
|
|
|
|
|
CACHE = {} |
|
|
|
|
|
|
|
|
def load_flan(): |
|
|
if "flan" not in CACHE: |
|
|
tok = AutoTokenizer.from_pretrained("google/flan-t5-base") |
|
|
mdl = AutoModelForSeq2SeqLM.from_pretrained( |
|
|
"google/flan-t5-base", |
|
|
low_cpu_mem_usage=True, |
|
|
torch_dtype="auto" |
|
|
).to(DEVICE) |
|
|
CACHE["flan"] = (mdl, tok) |
|
|
return CACHE["flan"] |
|
|
|
|
|
def run_flan(sentence: str) -> str: |
|
|
model, tok = load_flan() |
|
|
prompt = f"Euskara zuzen gramatikalki eta idatzi modu naturalean: {sentence}" |
|
|
inputs = tok(prompt, return_tensors="pt").to(DEVICE) |
|
|
with torch.no_grad(): |
|
|
out = model.generate(**inputs, max_new_tokens=96, num_beams=4) |
|
|
return tok.decode(out[0], skip_special_tokens=True).strip() |
|
|
|
|
|
|
|
|
def load_euskera(): |
|
|
if "eus" not in CACHE: |
|
|
tok1 = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-eu-es") |
|
|
mdl1 = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-eu-es").to(DEVICE) |
|
|
tok2 = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-es-eu") |
|
|
mdl2 = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-es-eu").to(DEVICE) |
|
|
CACHE["eus"] = (mdl1, tok1, mdl2, tok2) |
|
|
return CACHE["eus"] |
|
|
|
|
|
def run_roundtrip(sentence: str) -> str: |
|
|
mdl1, tok1, mdl2, tok2 = load_euskera() |
|
|
|
|
|
inputs = tok1(sentence, return_tensors="pt").to(DEVICE) |
|
|
es_tokens = mdl1.generate(**inputs, max_length=128, num_beams=4) |
|
|
spanish = tok1.decode(es_tokens[0], skip_special_tokens=True) |
|
|
|
|
|
inputs2 = tok2(spanish, return_tensors="pt").to(DEVICE) |
|
|
eu_tokens = mdl2.generate(**inputs2, max_length=128, num_beams=4) |
|
|
euskera = tok2.decode(eu_tokens[0], skip_special_tokens=True) |
|
|
return euskera.strip() |
|
|
|
|
|
|
|
|
def polish(sentence: str, choice: str) -> str: |
|
|
if not sentence.strip(): |
|
|
return "" |
|
|
if choice.startswith("FLAN"): |
|
|
return run_flan(sentence) |
|
|
elif choice.startswith("Helsinki"): |
|
|
return run_roundtrip(sentence) |
|
|
else: |
|
|
return "Unknown option." |
|
|
|
|
|
|
|
|
with gr.Blocks(title="HizkuntzLagun: AI Euskera Zuzendu (CPU enabled)") as demo: |
|
|
gr.Markdown("### HizkuntzLagun: AI Euskera Zuzedu\n") |
|
|
gr.Markdown( |
|
|
""" |
|
|
> ⚡ **Oharra:** |
|
|
> Tresna honek doako, CPU‑lagunko AI ereduak erabiltzen ditu. |
|
|
> Azkarra eta eskuragarria izateko diseinatuta dago — ez beti perfektua. |
|
|
> Zuzenketa azkarrak bai, ez analisi gramatikal sakonak. |
|
|
> Edozein unetan erabil dezakezu — eguneroko zuzenketa txiki batek saihesten du esaldi traketsen lotsa. |
|
|
""") |
|
|
inp = gr.Textbox(lines=3, label="Idatzi Euskeraz esaldi bat, adibidez Gaur Kondo ikusi nuen.", placeholder="Idatzi esaldi bat...") |
|
|
choice = gr.Dropdown(choices=MODEL_OPTIONS, value="Helsinki", label="Metodoa") |
|
|
btn = gr.Button("Euskera zuzendu") |
|
|
out = gr.Textbox(label="Zuzenketa") |
|
|
btn.click(polish, inputs=[inp, choice], outputs=out) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|