Update app.py
Browse files
app.py
CHANGED
|
@@ -1,34 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import MarianMTModel, MarianTokenizer
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
if __name__ == "__main__":
|
| 34 |
demo.launch()
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
# Requirements: transformers, torch, sentencepiece, sacremoses, gradio
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
import gradio as gr
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, MarianMTModel, MarianTokenizer
|
| 7 |
+
|
| 8 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
+
|
| 10 |
+
MODEL_OPTIONS = [
|
| 11 |
+
"FLAN-T5-base (Google en→en)",
|
| 12 |
+
"Round-trip OPUS-MT en→es→en (Helsinki-NLP)"
|
| 13 |
+
]
|
| 14 |
+
|
| 15 |
+
# Cache
|
| 16 |
+
CACHE = {}
|
| 17 |
+
|
| 18 |
+
# --- FLAN loader ---
|
| 19 |
+
def load_flan():
|
| 20 |
+
if "flan" not in CACHE:
|
| 21 |
+
tok = AutoTokenizer.from_pretrained("google/flan-t5-base")
|
| 22 |
+
mdl = AutoModelForSeq2SeqLM.from_pretrained(
|
| 23 |
+
"google/flan-t5-base",
|
| 24 |
+
low_cpu_mem_usage=True,
|
| 25 |
+
torch_dtype="auto"
|
| 26 |
+
).to(DEVICE)
|
| 27 |
+
CACHE["flan"] = (mdl, tok)
|
| 28 |
+
return CACHE["flan"]
|
| 29 |
+
|
| 30 |
+
def run_flan(sentence: str) -> str:
|
| 31 |
+
model, tok = load_flan()
|
| 32 |
+
prompt = f"Correct grammar and rewrite in fluent British English: {sentence}"
|
| 33 |
+
inputs = tok(prompt, return_tensors="pt").to(DEVICE)
|
| 34 |
+
with torch.no_grad():
|
| 35 |
+
out = model.generate(**inputs, max_new_tokens=96, num_beams=4)
|
| 36 |
+
return tok.decode(out[0], skip_special_tokens=True).strip()
|
| 37 |
+
|
| 38 |
+
# --- Marian round-trip loader ---
|
| 39 |
+
def load_marian():
|
| 40 |
+
if "en_es" not in CACHE:
|
| 41 |
+
tok1 = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-es")
|
| 42 |
+
mdl1 = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-es").to(DEVICE)
|
| 43 |
+
tok2 = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-es-en")
|
| 44 |
+
mdl2 = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-es-en").to(DEVICE)
|
| 45 |
+
CACHE["en_es"] = (mdl1, tok1, mdl2, tok2)
|
| 46 |
+
return CACHE["en_es"]
|
| 47 |
+
|
| 48 |
+
def run_roundtrip(sentence: str) -> str:
|
| 49 |
+
mdl1, tok1, mdl2, tok2 = load_marian()
|
| 50 |
+
# English → Spanish
|
| 51 |
+
inputs = tok1(sentence, return_tensors="pt").to(DEVICE)
|
| 52 |
+
es_tokens = mdl1.generate(**inputs, max_length=128, num_beams=4)
|
| 53 |
+
spanish = tok1.decode(es_tokens[0], skip_special_tokens=True)
|
| 54 |
+
# Spanish → English
|
| 55 |
+
inputs2 = tok2(spanish, return_tensors="pt").to(DEVICE)
|
| 56 |
+
en_tokens = mdl2.generate(**inputs2, max_length=128, num_beams=4)
|
| 57 |
+
english = tok2.decode(en_tokens[0], skip_special_tokens=True)
|
| 58 |
+
return english.strip()
|
| 59 |
+
|
| 60 |
+
# --- Dispatcher ---
|
| 61 |
+
def polish(sentence: str, choice: str) -> str:
|
| 62 |
+
if not sentence.strip():
|
| 63 |
+
return ""
|
| 64 |
+
if choice.startswith("FLAN"):
|
| 65 |
+
return run_flan(sentence)
|
| 66 |
+
elif choice.startswith("Round-trip"):
|
| 67 |
+
return run_roundtrip(sentence)
|
| 68 |
+
else:
|
| 69 |
+
return "Unknown option."
|
| 70 |
+
|
| 71 |
+
# --- Gradio UI ---
|
| 72 |
+
with gr.Blocks(title="English Grammar Polisher") as demo:
|
| 73 |
+
gr.Markdown("### English Grammar Polisher\nChoose FLAN-T5 (Google) or OPUS-MT round-trip (Helsinki-NLP).")
|
| 74 |
+
inp = gr.Textbox(lines=3, label="Input (English)", placeholder="Type a sentence…")
|
| 75 |
+
choice = gr.Dropdown(choices=MODEL_OPTIONS, value="FLAN-T5-base (Google en→en)", label="Method")
|
| 76 |
+
btn = gr.Button("Polish")
|
| 77 |
+
out = gr.Textbox(label="Output")
|
| 78 |
+
btn.click(polish, inputs=[inp, choice], outputs=out)
|
| 79 |
|
| 80 |
if __name__ == "__main__":
|
| 81 |
demo.launch()
|