import torch from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr # Supported models (text-only for now) MODEL_OPTIONS = { "Phi-3.5 Mini Instruct": "microsoft/Phi-3.5-mini-instruct", "Phi-3.5 MoE Instruct": "microsoft/Phi-3.5-MoE-instruct", "Phi-3 Mini 4K Instruct": "microsoft/Phi-3-mini-4k-instruct", "Phi-3 Mini 128K Instruct": "microsoft/Phi-3-mini-128k-instruct" } # Cache for loaded models loaded_models = {} EXAMPLES = [ "Write a short story about a robot who learns to talk with a human.", "Summarize this paragraph: “From Stettin in the Baltic to Trieste in the Adriatic, an iron curtain has descended across the Continent. Behind that line lie all the capitals of the ancient states of Central and Eastern Europe. Warsaw, Berlin, Prague, Vienna, Budapest, Belgrade, Bucharest and Sofia, all these famous cities and the populations around them lie in what I must call the Soviet sphere, and all are subject in one form or another, not only to Soviet influence but to a very high and in some cases increasing measure of control from Moscow", "Explain how solar panels work in simple terms.", "Translate this sentence into Basque: 'The sea is calm today.'", "Write a noir-style intro for a detective in Amara." ] # Load model/tokenizer on demand def load_model(model_id): if model_id not in loaded_models: tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True, torch_dtype=torch.float32 ) model.eval() loaded_models[model_id] = (tokenizer, model) return loaded_models[model_id] # Chat function def chat_with_model(user_input, model_choice): model_id = MODEL_OPTIONS[model_choice] tokenizer, model = load_model(model_id) messages = [{"role": "user", "content": user_input}] inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to("cpu") with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=100, use_cache=False, # <— add this do_sample=False, temperature=0.7, top_p=0.9 ) response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True) return response.strip() # Gradio UI with gr.Blocks(title="Phi-3 Instruct Explorer") as demo: gr.Markdown("## 🧠 Phi-3 Instruct Explorer\nSwitch between Phi-3 instruct models and test responses on CPU.\nI am designed with advanced capabilities in natural language understanding and generation. I can process and generate human-like text based on the input I receive, answer questions, provide explanations, and assist with a wide range of topics.") with gr.Row(): model_choice = gr.Dropdown( label="Choose a model", choices=list(MODEL_OPTIONS.keys()), value="Phi-3.5 Mini Instruct" ) with gr.Row(): user_input = gr.Textbox(label="Your message", placeholder="Ask me anything...") with gr.Row(): output = gr.Textbox(label="Model response") with gr.Row(): submit = gr.Button("Generate") # Example prompts gr.Markdown("### 🧪 Try an example prompt:") gr.Examples( examples=EXAMPLES, inputs=user_input ) submit.click(fn=chat_with_model, inputs=[user_input, model_choice], outputs=output) demo.launch()