Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import os | |
| import gradio as gr | |
| from PIL import Image | |
| from diffusers import ( | |
| DiffusionPipeline, | |
| AutoencoderKL, | |
| StableDiffusionControlNetPipeline, | |
| ControlNetModel, | |
| StableDiffusionLatentUpscalePipeline, | |
| DPMSolverMultistepScheduler, # <-- Added import | |
| EulerDiscreteScheduler # <-- Added import | |
| ) | |
| from share_btn import community_icon_html, loading_icon_html, share_js | |
| from illusion_style import css | |
| BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE" | |
| # Initialize both pipelines | |
| vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse") | |
| #init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", torch_dtype=torch.float16) | |
| controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster")#, torch_dtype=torch.float16) | |
| main_pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| BASE_MODEL, | |
| controlnet=controlnet, | |
| vae=vae, | |
| safety_checker=None, | |
| #torch_dtype=torch.float16, | |
| ).to("cuda") | |
| #model_id = "stabilityai/sd-x2-latent-upscaler" | |
| #upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
| #upscaler.to("cuda") | |
| # Sampler map | |
| SAMPLER_MAP = { | |
| "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"), | |
| "Euler": lambda config: EulerDiscreteScheduler.from_config(config), | |
| } | |
| def center_crop_resize(img, output_size=(512, 512)): | |
| width, height = img.size | |
| # Calculate dimensions to crop to the center | |
| new_dimension = min(width, height) | |
| left = (width - new_dimension)/2 | |
| top = (height - new_dimension)/2 | |
| right = (width + new_dimension)/2 | |
| bottom = (height + new_dimension)/2 | |
| # Crop and resize | |
| img = img.crop((left, top, right, bottom)) | |
| img = img.resize(output_size) | |
| return img | |
| # Inference function | |
| def inference( | |
| control_image: Image.Image, | |
| prompt: str, | |
| negative_prompt: str, | |
| guidance_scale: float = 8.0, | |
| controlnet_conditioning_scale: float = 1, | |
| seed: int = -1, | |
| sampler = "DPM++ Karras SDE", | |
| progress = gr.Progress(track_tqdm=True) | |
| ): | |
| if prompt is None or prompt == "": | |
| raise gr.Error("Prompt is required") | |
| # Generate the initial image | |
| #init_image = init_pipe(prompt).images[0] | |
| # Rest of your existing code | |
| control_image = center_crop_resize(control_image) | |
| main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config) | |
| generator = torch.manual_seed(seed) if seed != -1 else torch.Generator() | |
| out = main_pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| image=control_image, | |
| #control_image=control_image, | |
| guidance_scale=float(guidance_scale), | |
| controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
| generator=generator, | |
| #strength=strength, | |
| num_inference_steps=30, | |
| #output_type="latent" | |
| ).images[0] | |
| return out, gr.update(visible=True) | |
| with gr.Blocks(css=css) as app: | |
| gr.Markdown( | |
| ''' | |
| <center><h1>Illusion Diffusion π</h1></span> | |
| <span font-size:16px;">Generate stunning illusion artwork with Stable Diffusion</span> | |
| </center> | |
| A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG) | |
| This project works by using [Monster Labs QR Control Net](https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster). | |
| Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: MrUgleh (https://twitter.com/MrUgleh) for discovering the workflow :) | |
| ''' | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| control_image = gr.Image(label="Input Illusion", type="pil", elem_id="control_image") | |
| controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.8, label="Illusion strength", info="ControlNet conditioning scale") | |
| gr.Examples(examples=["checkers.png", "pattern.png", "spiral.jpeg"], inputs=control_image) | |
| prompt = gr.Textbox(label="Prompt", elem_id="prompt") | |
| negative_prompt = gr.Textbox(label="Negative Prompt", value="low quality", elem_id="negative_prompt") | |
| with gr.Accordion(label="Advanced Options", open=False): | |
| #strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength") | |
| guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale") | |
| sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="Euler") | |
| seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True) | |
| run_btn = gr.Button("Run") | |
| with gr.Column(): | |
| result_image = gr.Image(label="Illusion Diffusion Output", elem_id="output") | |
| with gr.Group(elem_id="share-btn-container", visible=False) as share_group: | |
| community_icon = gr.HTML(community_icon_html) | |
| loading_icon = gr.HTML(loading_icon_html) | |
| share_button = gr.Button("Share to community", elem_id="share-btn") | |
| run_btn.click( | |
| inference, | |
| inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, seed, sampler], | |
| outputs=[result_image, share_group] | |
| ) | |
| share_button.click(None, [], [], _js=share_js) | |
| app.queue(max_size=20) | |
| if __name__ == "__main__": | |
| app.launch() |