Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
9ad92f4
1
Parent(s):
fa07c02
Update app.py (#2)
Browse files- Update app.py (552ecdb2f129af4928bd10439ea41eec2bb9a52f)
Co-authored-by: Apolinário from multimodal AI art <multimodalart@users.noreply.huggingface.co>
app.py
CHANGED
|
@@ -4,8 +4,9 @@ import gradio as gr
|
|
| 4 |
from PIL import Image
|
| 5 |
from diffusers import (
|
| 6 |
DiffusionPipeline,
|
| 7 |
-
|
| 8 |
ControlNetModel,
|
|
|
|
| 9 |
DPMSolverMultistepScheduler, # <-- Added import
|
| 10 |
EulerDiscreteScheduler # <-- Added import
|
| 11 |
)
|
|
@@ -13,12 +14,16 @@ from diffusers import (
|
|
| 13 |
# Initialize both pipelines
|
| 14 |
init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V2.0", torch_dtype=torch.float16).to("cuda")
|
| 15 |
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)
|
| 16 |
-
main_pipe =
|
| 17 |
"SG161222/Realistic_Vision_V2.0",
|
| 18 |
controlnet=controlnet,
|
| 19 |
safety_checker=None,
|
| 20 |
torch_dtype=torch.float16,
|
| 21 |
).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Sampler map
|
| 24 |
SAMPLER_MAP = {
|
|
@@ -26,6 +31,22 @@ SAMPLER_MAP = {
|
|
| 26 |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
| 27 |
}
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
# Inference function
|
| 30 |
def inference(
|
| 31 |
control_image: Image.Image,
|
|
@@ -33,49 +54,46 @@ def inference(
|
|
| 33 |
negative_prompt: str,
|
| 34 |
guidance_scale: float = 8.0,
|
| 35 |
controlnet_conditioning_scale: float = 1,
|
| 36 |
-
strength: float = 0.9,
|
| 37 |
seed: int = -1,
|
| 38 |
sampler = "DPM++ Karras SDE",
|
|
|
|
| 39 |
):
|
| 40 |
if prompt is None or prompt == "":
|
| 41 |
raise gr.Error("Prompt is required")
|
| 42 |
|
| 43 |
# Generate the initial image
|
| 44 |
-
init_image = init_pipe(prompt).images[0]
|
| 45 |
|
| 46 |
# Rest of your existing code
|
| 47 |
-
control_image = control_image
|
| 48 |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
| 49 |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
| 50 |
|
| 51 |
out = main_pipe(
|
| 52 |
prompt=prompt,
|
| 53 |
negative_prompt=negative_prompt,
|
| 54 |
-
image=
|
| 55 |
-
control_image=control_image,
|
| 56 |
-
guidance_scale=guidance_scale,
|
| 57 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 58 |
generator=generator,
|
| 59 |
-
strength=strength,
|
| 60 |
num_inference_steps=30,
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
|
| 64 |
with gr.Blocks() as app:
|
| 65 |
gr.Markdown(
|
| 66 |
'''
|
| 67 |
-
<center>
|
| 68 |
-
|
| 69 |
-
<span
|
| 70 |
-
<span style="color:black; font-size:16px;">Generate stunning illusion artwork with Stable Diffusion</span>
|
| 71 |
-
<span style="color:black; font-size:10px;">A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG)</span>
|
| 72 |
-
|
| 73 |
</center>
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
Given a prompt, we generate an init image and pass that alongside the control illusion to create a stunning illusion! Credit to : MrUgleh (https://twitter.com/MrUgleh) for discovering the workflow :)</span>
|
| 78 |
-
</p>
|
| 79 |
|
| 80 |
'''
|
| 81 |
)
|
|
@@ -83,13 +101,14 @@ with gr.Blocks() as app:
|
|
| 83 |
with gr.Row():
|
| 84 |
with gr.Column():
|
| 85 |
control_image = gr.Image(label="Input Illusion", type="pil")
|
|
|
|
|
|
|
| 86 |
prompt = gr.Textbox(label="Prompt")
|
| 87 |
negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw")
|
| 88 |
with gr.Accordion(label="Advanced Options", open=False):
|
| 89 |
-
|
| 90 |
-
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength")
|
| 91 |
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
|
| 92 |
-
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="
|
| 93 |
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True)
|
| 94 |
run_btn = gr.Button("Run")
|
| 95 |
with gr.Column():
|
|
@@ -97,11 +116,11 @@ with gr.Blocks() as app:
|
|
| 97 |
|
| 98 |
run_btn.click(
|
| 99 |
inference,
|
| 100 |
-
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale,
|
| 101 |
outputs=[result_image]
|
| 102 |
)
|
| 103 |
|
| 104 |
app.queue(max_size=20)
|
| 105 |
|
| 106 |
if __name__ == "__main__":
|
| 107 |
-
app.launch(
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
from diffusers import (
|
| 6 |
DiffusionPipeline,
|
| 7 |
+
StableDiffusionControlNetPipeline,
|
| 8 |
ControlNetModel,
|
| 9 |
+
StableDiffusionLatentUpscalePipeline,
|
| 10 |
DPMSolverMultistepScheduler, # <-- Added import
|
| 11 |
EulerDiscreteScheduler # <-- Added import
|
| 12 |
)
|
|
|
|
| 14 |
# Initialize both pipelines
|
| 15 |
init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V2.0", torch_dtype=torch.float16).to("cuda")
|
| 16 |
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)
|
| 17 |
+
main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 18 |
"SG161222/Realistic_Vision_V2.0",
|
| 19 |
controlnet=controlnet,
|
| 20 |
safety_checker=None,
|
| 21 |
torch_dtype=torch.float16,
|
| 22 |
).to("cuda")
|
| 23 |
+
model_id = "stabilityai/sd-x2-latent-upscaler"
|
| 24 |
+
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 25 |
+
upscaler.to("cuda")
|
| 26 |
+
|
| 27 |
|
| 28 |
# Sampler map
|
| 29 |
SAMPLER_MAP = {
|
|
|
|
| 31 |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
| 32 |
}
|
| 33 |
|
| 34 |
+
def center_crop_resize(img, output_size=(512, 512)):
|
| 35 |
+
width, height = img.size
|
| 36 |
+
|
| 37 |
+
# Calculate dimensions to crop to the center
|
| 38 |
+
new_dimension = min(width, height)
|
| 39 |
+
left = (width - new_dimension)/2
|
| 40 |
+
top = (height - new_dimension)/2
|
| 41 |
+
right = (width + new_dimension)/2
|
| 42 |
+
bottom = (height + new_dimension)/2
|
| 43 |
+
|
| 44 |
+
# Crop and resize
|
| 45 |
+
img = img.crop((left, top, right, bottom))
|
| 46 |
+
img = img.resize(output_size)
|
| 47 |
+
|
| 48 |
+
return img
|
| 49 |
+
|
| 50 |
# Inference function
|
| 51 |
def inference(
|
| 52 |
control_image: Image.Image,
|
|
|
|
| 54 |
negative_prompt: str,
|
| 55 |
guidance_scale: float = 8.0,
|
| 56 |
controlnet_conditioning_scale: float = 1,
|
|
|
|
| 57 |
seed: int = -1,
|
| 58 |
sampler = "DPM++ Karras SDE",
|
| 59 |
+
progress = gr.Progress(track_tqdm=True)
|
| 60 |
):
|
| 61 |
if prompt is None or prompt == "":
|
| 62 |
raise gr.Error("Prompt is required")
|
| 63 |
|
| 64 |
# Generate the initial image
|
| 65 |
+
#init_image = init_pipe(prompt).images[0]
|
| 66 |
|
| 67 |
# Rest of your existing code
|
| 68 |
+
control_image = center_crop_resize(control_image)
|
| 69 |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
| 70 |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
| 71 |
|
| 72 |
out = main_pipe(
|
| 73 |
prompt=prompt,
|
| 74 |
negative_prompt=negative_prompt,
|
| 75 |
+
image=control_image,
|
| 76 |
+
#control_image=control_image,
|
| 77 |
+
guidance_scale=float(guidance_scale),
|
| 78 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
| 79 |
generator=generator,
|
| 80 |
+
#strength=strength,
|
| 81 |
num_inference_steps=30,
|
| 82 |
+
#output_type="latent"
|
| 83 |
+
).images[0]
|
| 84 |
+
|
| 85 |
+
return out
|
| 86 |
|
| 87 |
with gr.Blocks() as app:
|
| 88 |
gr.Markdown(
|
| 89 |
'''
|
| 90 |
+
<center><h1>Illusion Diffusion 🌀</h1></span>
|
| 91 |
+
<span font-size:16px;">Generate stunning illusion artwork with Stable Diffusion</span>
|
| 92 |
+
<span font-size:10px;">A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG)</span>
|
|
|
|
|
|
|
|
|
|
| 93 |
</center>
|
| 94 |
|
| 95 |
+
This project works by using the QR Control Net by Monster Labs: [Monster Labs QR Control Net](https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster).
|
| 96 |
+
Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: MrUgleh (https://twitter.com/MrUgleh) for discovering the workflow :)
|
|
|
|
|
|
|
| 97 |
|
| 98 |
'''
|
| 99 |
)
|
|
|
|
| 101 |
with gr.Row():
|
| 102 |
with gr.Column():
|
| 103 |
control_image = gr.Image(label="Input Illusion", type="pil")
|
| 104 |
+
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.8, label="Illusion strength", info="ControlNet conditioning scale")
|
| 105 |
+
gr.Examples(examples=["checkers.png", "pattern.png", "spiral.jpeg"], inputs=control_image)
|
| 106 |
prompt = gr.Textbox(label="Prompt")
|
| 107 |
negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw")
|
| 108 |
with gr.Accordion(label="Advanced Options", open=False):
|
| 109 |
+
#strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength")
|
|
|
|
| 110 |
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
|
| 111 |
+
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="Euler")
|
| 112 |
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True)
|
| 113 |
run_btn = gr.Button("Run")
|
| 114 |
with gr.Column():
|
|
|
|
| 116 |
|
| 117 |
run_btn.click(
|
| 118 |
inference,
|
| 119 |
+
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, seed, sampler],
|
| 120 |
outputs=[result_image]
|
| 121 |
)
|
| 122 |
|
| 123 |
app.queue(max_size=20)
|
| 124 |
|
| 125 |
if __name__ == "__main__":
|
| 126 |
+
app.launch()
|