Spaces:
Runtime error
Runtime error
| # Copyright (c) 2019 Shigeki Karita | |
| # 2020 Mobvoi Inc (Binbin Zhang) | |
| # 2022 Xingchen Song (sxc19@mails.tsinghua.edu.cn) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Multi-Head Attention layer definition.""" | |
| import math | |
| from typing import Optional, Tuple | |
| import torch | |
| from torch import nn | |
| from wenet.utils.rope_utils import WENET_APPLY_ROTARY_EMB | |
| T_CACHE = Tuple[torch.Tensor, torch.Tensor] | |
| class MultiHeadedAttention(nn.Module): | |
| """Multi-Head Attention layer. | |
| if n_kv_head != None and n_kv_head != n_head | |
| see: https://arxiv.org/pdf/1911.02150.pdf | |
| https://arxiv.org/pdf/2305.13245.pdf | |
| Example: | |
| case 1: n_kv_head == None, head_dim == None, MultiHead attention (MHSA) | |
| case 2: n_kv_head=1, n_head = 16, MultiQuery attention (MQA) | |
| case 3: nv_kv_head=2, n_head = 16, GroupedQuery attention (GQA) | |
| Args: | |
| n_head (int): The number of heads. | |
| n_feat (int): The number of features. | |
| dropout_rate (float): Dropout rate. | |
| """ | |
| def __init__(self, | |
| n_head: int, | |
| n_feat: int, | |
| dropout_rate: float, | |
| query_bias: bool = True, | |
| key_bias: bool = True, | |
| value_bias: bool = True, | |
| use_sdpa: bool = False, | |
| n_kv_head: Optional[int] = None, | |
| head_dim: Optional[int] = None): | |
| """Construct an MultiHeadedAttention object.""" | |
| super().__init__() | |
| self.inner_dim = n_feat if head_dim is None else head_dim * n_head | |
| if n_kv_head is not None: | |
| assert head_dim is not None | |
| self.inner_kv_dim = head_dim * n_kv_head | |
| n_kv_head = n_kv_head | |
| else: | |
| self.inner_kv_dim = self.inner_dim | |
| n_kv_head = n_head | |
| # We assume d_v always equals d_k | |
| self.d_k = self.inner_dim // n_head | |
| assert self.d_k == self.inner_kv_dim // n_kv_head | |
| self.h = n_head | |
| self.h_kv = n_kv_head | |
| self.linear_q = nn.Linear(n_feat, self.inner_dim, bias=query_bias) | |
| self.linear_k = nn.Linear(n_feat, self.inner_kv_dim, bias=key_bias) | |
| self.linear_v = nn.Linear(n_feat, self.inner_kv_dim, bias=value_bias) | |
| self.linear_out = nn.Linear(self.inner_dim, n_feat, bias=query_bias) | |
| self.dropout = nn.Dropout(p=dropout_rate) | |
| self.use_sdpa = use_sdpa | |
| self.dropout_rate = dropout_rate | |
| def _forward_linearx(self, | |
| name: str, | |
| x: torch.Tensor, | |
| head_first: bool = True) -> torch.Tensor: | |
| assert x.ndim >= 3 | |
| if name == 'query': | |
| x = self.linear_q(x) | |
| x_shape = x.size() | |
| x_shape = x_shape[:-1] + torch.Size([self.h, self.d_k]) | |
| elif name == 'key': | |
| x = self.linear_k(x) | |
| x_shape = x.size() | |
| x_shape = x_shape[:-1] + torch.Size([self.h_kv, self.d_k]) | |
| else: | |
| assert name == 'value' | |
| x = self.linear_v(x) | |
| x_shape = x.size() | |
| x_shape = x_shape[:-1] + torch.Size([self.h_kv, self.d_k]) | |
| # split last dim | |
| x = x.view(x_shape) | |
| if head_first: | |
| x = x.transpose(-3, | |
| -2) # (batch, ..., head or head_kv, time, d_k) | |
| return x | |
| def forward_qkv( | |
| self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """Transform query, key and value. | |
| Args: | |
| query (torch.Tensor): Query tensor (#batch, ..., time1, size). | |
| key (torch.Tensor): Key tensor (#batch, ..., time2, size). | |
| value (torch.Tensor): Value tensor (#batch, ..., time2, size). | |
| Returns: | |
| torch.Tensor: Transformed query tensor, size | |
| (#batch, ..., n_head, time1, d_k). | |
| torch.Tensor: Transformed key tensor, size | |
| (#batch, ..., n_head_kv, time2, d_k). | |
| torch.Tensor: Transformed value tensor, size | |
| (#batch, ..., n_head_kv, time2, d_k). | |
| """ | |
| q = self._forward_linearx('query', query) | |
| k = self._forward_linearx('key', key) | |
| v = self._forward_linearx('value', value) | |
| return q, k, v | |
| def forward_attention( | |
| self, | |
| value: torch.Tensor, | |
| scores: torch.Tensor, | |
| mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool) | |
| ) -> torch.Tensor: | |
| """Compute attention context vector. | |
| Args: | |
| value (torch.Tensor): Transformed value, size | |
| (#batch, ..., n_head, time2, d_k). | |
| scores (torch.Tensor): Attention score, size | |
| (#batch, ..., n_head, time1, time2). | |
| mask (torch.Tensor): Mask, size (#batch, 1, time2) or | |
| (#batch, ..., time1, time2), (0, ..., 0, 0) means fake mask. | |
| Returns: | |
| torch.Tensor: Transformed value (#batch, time1, d_model) | |
| weighted by the attention score (#batch, time1, time2). | |
| """ | |
| # NOTE(xcsong): When will `if mask.size(2) > 0` be True? | |
| # 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the | |
| # 1st chunk to ease the onnx export.] | |
| # 2. pytorch training | |
| if mask.size(-1) > 0: # time2 > 0 | |
| mask = mask.unsqueeze(-3).eq(0) # (batch, .., 1, *, time2) | |
| # For last chunk, time2 might be larger than scores.size(-1) | |
| mask = mask[..., :scores.size(-1)] # (batch, 1, *, time2) | |
| scores = scores.masked_fill(mask, -float('inf')) | |
| attn = torch.softmax(scores.float(), | |
| dim=-1).type_as(value).masked_fill( | |
| mask, 0.0) # (batch, head, time1, time2) | |
| # NOTE(xcsong): When will `if mask.size(2) > 0` be False? | |
| # 1. onnx(16/-1, -1/-1, 16/0) | |
| # 2. jit (16/-1, -1/-1, 16/0, 16/4) | |
| else: | |
| attn = torch.softmax(scores.float(), dim=-1).type_as( | |
| value) # (batch, ..., head, time1, time2) | |
| p_attn = self.dropout(attn) | |
| x = torch.matmul(p_attn, value) # (batch, ..., head, time1, d_k) | |
| x = x.transpose(-3, -2).contiguous() # [batch, ..., time1, head, d_k] | |
| x_shape = x.size()[:-2] + torch.Size([self.h * self.d_k]) | |
| x = x.view(x_shape) # (batch, ..., time1, d_model) | |
| return self.linear_out(x) # (batch, ..., time1, d_model) | |
| def _update_kv_and_cache( | |
| self, | |
| k: torch.Tensor, | |
| v: torch.Tensor, | |
| cache: T_CACHE, | |
| head_first: bool = True | |
| ) -> Tuple[torch.Tensor, torch.Tensor, T_CACHE]: | |
| new_cache = cache | |
| seq_axis = -2 if head_first else -3 | |
| head_axis = -3 if head_first else -2 | |
| if not self.training: | |
| # NOTE(xcsong): | |
| # when export onnx model, for 1st chunk, we feed | |
| # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) | |
| # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). | |
| # In all modes, `if cache.size(0) > 0` will alwayse be `True` | |
| # and we will always do splitting and | |
| # concatnation(this will simplify onnx export). Note that | |
| # it's OK to concat & split zero-shaped tensors(see code below). | |
| # when export jit model, for 1st chunk, we always feed | |
| # cache(0, 0, 0, 0) since jit supports dynamic if-branch. | |
| # >>> a = torch.ones((1, 2, 0, 4)) | |
| # >>> b = torch.ones((1, 2, 3, 4)) | |
| # >>> c = torch.cat((a, b), dim=2) | |
| # >>> torch.equal(b, c) # True | |
| # >>> d = torch.split(a, 2, dim=-1) | |
| # >>> torch.equal(d[0], d[1]) # True | |
| key_cache, value_cache = cache | |
| if key_cache.size(0) > 0: | |
| k = torch.cat([key_cache, k], dim=seq_axis) | |
| if value_cache.size(0) > 0: | |
| v = torch.cat([value_cache, v], dim=seq_axis) | |
| # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's | |
| # non-trivial to calculate `next_cache_start` here. | |
| # new_cache = torch.cat((k, v), dim=-1) if not self.training else cache | |
| new_cache = (k, v) | |
| # for multi query or multi group attention | |
| if self.h_kv != self.h and self.h_kv != 1: | |
| # NOTE: onnxruntime issues: | |
| # https://github.com/wenet-e2e/wenet/issues/2517 | |
| # k = torch.repeat_interleave( | |
| # k, | |
| # self.h // self.h_kv, | |
| # dim=-3, | |
| # ) | |
| # v = torch.repeat_interleave( | |
| # v, | |
| # self.h // self.h_kv, | |
| # dim=-3, | |
| # ) | |
| n_repeat = self.h // self.h_kv | |
| k_shape = k.size() | |
| repeat_axis = head_axis + 1 | |
| k = k.unsqueeze(head_axis).expand( | |
| k_shape[:repeat_axis] + torch.Size([n_repeat]) + | |
| k_shape[repeat_axis:]).reshape( | |
| k_shape[:head_axis] + torch.Size([self.h_kv * n_repeat]) + | |
| k_shape[repeat_axis:]) | |
| v_shape = v.size() | |
| v = v.unsqueeze(head_axis).expand( | |
| v_shape[:repeat_axis] + torch.Size([n_repeat]) + | |
| v_shape[(repeat_axis):]).reshape( | |
| v_shape[:head_axis] + torch.Size([self.h_kv * n_repeat]) + | |
| v_shape[repeat_axis:]) | |
| return k, v, new_cache | |
| def forward( | |
| self, | |
| query: torch.Tensor, | |
| key: torch.Tensor, | |
| value: torch.Tensor, | |
| mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| pos_emb: torch.Tensor = torch.empty(0), | |
| cache: T_CACHE = (torch.zeros(0, 0, 0, 0), torch.zeros(0, 0, 0, 0)), | |
| ) -> Tuple[torch.Tensor, T_CACHE]: | |
| """Compute scaled dot product attention. | |
| Args: | |
| query (torch.Tensor): Query tensor (#batch, time1, size). | |
| key (torch.Tensor): Key tensor (#batch, time2, size). | |
| value (torch.Tensor): Value tensor (#batch, time2, size). | |
| mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
| (#batch, time1, time2). | |
| 1.When applying cross attention between decoder and encoder, | |
| the batch padding mask for input is in (#batch, 1, T) shape. | |
| 2.When applying self attention of encoder, | |
| the mask is in (#batch, T, T) shape. | |
| 3.When applying self attention of decoder, | |
| the mask is in (#batch, L, L) shape. | |
| 4.If the different position in decoder see different block | |
| of the encoder, such as Mocha, the passed in mask could be | |
| in (#batch, L, T) shape. But there is no such case in current | |
| Wenet. | |
| cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), | |
| where `cache_t == chunk_size * num_decoding_left_chunks` | |
| and `head * d_k == size` | |
| Returns: | |
| torch.Tensor: Output tensor (#batch, time1, d_model). | |
| torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) | |
| where `cache_t == chunk_size * num_decoding_left_chunks` | |
| and `head * d_k == size` | |
| """ | |
| q, k, v = self.forward_qkv(query, key, value) | |
| k, v, new_cache = self._update_kv_and_cache(k, v, cache) | |
| if not self.use_sdpa: | |
| scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) | |
| return self.forward_attention(v, scores, mask), new_cache | |
| else: | |
| output = torch.nn.functional.scaled_dot_product_attention( | |
| q, | |
| k, | |
| v, | |
| attn_mask=mask.unsqueeze(1), | |
| dropout_p=self.dropout_rate, | |
| scale=1 / math.sqrt(self.d_k), | |
| ) | |
| output = (output.transpose(1, 2).contiguous().view( | |
| query.size(0), -1, | |
| self.h * self.d_k)) # (batch, time1, d_model) | |
| return self.linear_out(output), new_cache | |
| class RelPositionMultiHeadedAttention(MultiHeadedAttention): | |
| """Multi-Head Attention layer with relative position encoding. | |
| Paper: https://arxiv.org/abs/1901.02860 | |
| Args: | |
| n_head (int): The number of heads. | |
| n_feat (int): The number of features. | |
| dropout_rate (float): Dropout rate. | |
| """ | |
| def __init__(self, | |
| n_head: int, | |
| n_feat: int, | |
| dropout_rate: float, | |
| query_bias: bool = True, | |
| key_bias: bool = True, | |
| value_bias: bool = True, | |
| use_sdpa: bool = False, | |
| n_kv_head: Optional[int] = None, | |
| head_dim: Optional[int] = None): | |
| """Construct an RelPositionMultiHeadedAttention object.""" | |
| super().__init__(n_head, n_feat, dropout_rate, query_bias, key_bias, | |
| value_bias, use_sdpa, n_kv_head, head_dim) | |
| # linear transformation for positional encoding | |
| self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) | |
| # these two learnable bias are used in matrix c and matrix d | |
| # as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
| self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) | |
| self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) | |
| torch.nn.init.xavier_uniform_(self.pos_bias_u) | |
| torch.nn.init.xavier_uniform_(self.pos_bias_v) | |
| def rel_shift(self, x, zero_triu: bool = False): | |
| """Compute relative positinal encoding. | |
| Args: | |
| x (torch.Tensor): Input tensor (batch, time, size). | |
| zero_triu (bool): If true, return the lower triangular part of | |
| the matrix. | |
| Returns: | |
| torch.Tensor: Output tensor. | |
| """ | |
| zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1), | |
| device=x.device, | |
| dtype=x.dtype) | |
| x_padded = torch.cat([zero_pad, x], dim=-1) | |
| x_padded = x_padded.view(x.size()[0], | |
| x.size()[1], | |
| x.size(3) + 1, x.size(2)) | |
| x = x_padded[:, :, 1:].view_as(x) | |
| if zero_triu: | |
| ones = torch.ones((x.size(2), x.size(3))) | |
| x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :] | |
| return x | |
| def forward( | |
| self, | |
| query: torch.Tensor, | |
| key: torch.Tensor, | |
| value: torch.Tensor, | |
| mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| pos_emb: torch.Tensor = torch.empty(0), | |
| cache: T_CACHE = (torch.zeros((0, 0, 0, 0)), torch.zeros((0, 0, 0, 0))) | |
| ) -> Tuple[torch.Tensor, T_CACHE]: | |
| """Compute 'Scaled Dot Product Attention' with rel. positional encoding. | |
| Args: | |
| query (torch.Tensor): Query tensor (#batch, time1, size). | |
| key (torch.Tensor): Key tensor (#batch, time2, size). | |
| value (torch.Tensor): Value tensor (#batch, time2, size). | |
| mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
| (#batch, time1, time2), (0, 0, 0) means fake mask. | |
| pos_emb (torch.Tensor): Positional embedding tensor | |
| (#batch, time2, size). | |
| cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), | |
| where `cache_t == chunk_size * num_decoding_left_chunks` | |
| and `head * d_k == size` | |
| Returns: | |
| torch.Tensor: Output tensor (#batch, time1, d_model). | |
| torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) | |
| where `cache_t == chunk_size * num_decoding_left_chunks` | |
| and `head * d_k == size` | |
| """ | |
| q, k, v = self.forward_qkv(query, key, value) | |
| q = q.transpose(1, 2) # (batch, time1, head, d_k) | |
| k, v, new_cache = self._update_kv_and_cache(k, v, cache) | |
| n_batch_pos = pos_emb.size(0) | |
| p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) | |
| p = p.transpose(1, 2) # (batch, head, time1, d_k) | |
| # (batch, head, time1, d_k) | |
| q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) | |
| # (batch, head, time1, d_k) | |
| q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) | |
| # compute matrix b and matrix d | |
| # (batch, head, time1, time2) | |
| matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) | |
| # Remove rel_shift since it is useless in speech recognition, | |
| # and it requires special attention for streaming. | |
| # matrix_bd = self.rel_shift(matrix_bd) | |
| if not self.use_sdpa: | |
| # compute attention score | |
| # first compute matrix a and matrix c | |
| # as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
| # (batch, head, time1, time2) | |
| matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) | |
| scores = (matrix_ac + matrix_bd) / math.sqrt( | |
| self.d_k) # (batch, head, time1, time2) | |
| return self.forward_attention(v, scores, mask), new_cache | |
| else: | |
| # NOTE(Mddct): we need mask bias, not boolean mask | |
| assert mask.dtype != torch.bool | |
| mask = mask.unsqueeze(1) | |
| # matrix_bd as a mask bias | |
| mask = (matrix_bd + mask) / math.sqrt(self.d_k) | |
| output = torch.nn.functional.scaled_dot_product_attention( | |
| q_with_bias_u, | |
| k, | |
| v, | |
| attn_mask=mask, | |
| dropout_p=self.dropout_rate, | |
| scale=1 / math.sqrt(self.d_k), | |
| ) | |
| output = (output.transpose(1, 2).contiguous().view( | |
| query.size(0), -1, | |
| self.h * self.d_k)) # (batch, time1, d_model) | |
| return self.linear_out(output), new_cache | |
| class MultiHeadedCrossAttention(MultiHeadedAttention): | |
| def __init__(self, | |
| n_head: int, | |
| n_feat: int, | |
| dropout_rate: float, | |
| query_bias: bool = True, | |
| key_bias: bool = True, | |
| value_bias: bool = True, | |
| use_sdpa: bool = False, | |
| n_kv_head: Optional[int] = None, | |
| head_dim: Optional[int] = None): | |
| super().__init__(n_head, n_feat, dropout_rate, query_bias, key_bias, | |
| value_bias, use_sdpa, n_kv_head, head_dim) | |
| def forward( | |
| self, | |
| query: torch.Tensor, | |
| key: torch.Tensor, | |
| value: torch.Tensor, | |
| mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| pos_emb: torch.Tensor = torch.empty(0), | |
| cache: T_CACHE = (torch.zeros((0, 0, 0, 0)), torch.zeros((0, 0, 0, 0))) | |
| ) -> Tuple[torch.Tensor, T_CACHE]: | |
| del pos_emb | |
| key_cache, value_cache = cache | |
| assert key_cache.size(0) == value_cache.size(0) | |
| if key_cache.size(0) > 0: | |
| assert not self.training | |
| q = self._forward_linearx('query', query) | |
| k, v = key_cache, value_cache | |
| else: | |
| q, k, v = self.forward_qkv(query, key, value) | |
| new_cache = (k, v) if not self.training else cache | |
| # for multi query or multi groups attention | |
| if self.h_kv != self.h and self.h_kv != 1: | |
| k = torch.repeat_interleave( | |
| k, | |
| self.h // self.h_kv, | |
| dim=-3, | |
| ) | |
| v = torch.repeat_interleave( | |
| v, | |
| self.h // self.h_kv, | |
| dim=-3, | |
| ) | |
| B = query.size(0) | |
| Beams = 1 | |
| if B != k.size(0): | |
| assert not self.training | |
| Beams = B // k.size(0) | |
| B = k.size(0) | |
| q = q.view(B, Beams, q.size(-3), q.size(-2), q.size(-1)) | |
| k = k.unsqueeze(1) | |
| v = v.unsqueeze(1) | |
| mask = mask.unsqueeze(1) | |
| if not self.use_sdpa: | |
| scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) | |
| output = self.forward_attention(v, scores, mask) | |
| else: | |
| output = torch.nn.functional.scaled_dot_product_attention( | |
| q, | |
| k, | |
| v, | |
| attn_mask=mask.unsqueeze(1), | |
| dropout_p=self.dropout_rate, | |
| scale=1 / math.sqrt(self.d_k), | |
| ) | |
| output = output.transpose(-2, -3).contiguous() | |
| output_shape = output.size()[:-2] + torch.Size([self.h * self.d_k]) | |
| output = output.view(output_shape) # (batch, ..., time1, d_model) | |
| output = self.linear_out(output) | |
| if query.size(0) != B: | |
| assert not self.training | |
| output_shape = torch.Size([B * Beams]) + output.size()[2:] | |
| output = output.view(output_shape) | |
| return output, new_cache | |
| class ShawRelPositionMultiHeadedAttention(MultiHeadedAttention): | |
| """ https://arxiv.org/pdf/1803.02155.pdf | |
| """ | |
| def __init__(self, | |
| n_head: int, | |
| n_feat: int, | |
| dropout_rate: float, | |
| query_bias: bool = True, | |
| key_bias: bool = True, | |
| value_bias: bool = True, | |
| use_sdpa: bool = False, | |
| n_kv_head: Optional[int] = None, | |
| head_dim: Optional[int] = None): | |
| del n_kv_head, head_dim | |
| super().__init__(n_head, n_feat, dropout_rate, query_bias, key_bias, | |
| value_bias, use_sdpa, None, None) | |
| # TODO(Mddct): 64 8 1 as args | |
| self.max_right_rel_pos = 8 | |
| self.max_left_rel_pos = 64 | |
| self.rel_k_embed = torch.nn.Embedding( | |
| self.max_left_rel_pos + self.max_right_rel_pos + 1, self.d_k) | |
| def _relative_indices(self, keys: torch.Tensor) -> torch.Tensor: | |
| # (S, 1) | |
| indices = torch.arange(keys.size(2), device=keys.device).unsqueeze(0) | |
| # (S, S) | |
| rel_indices = indices - indices.transpose(0, 1) | |
| rel_indices = torch.clamp(rel_indices, -self.max_left_rel_pos, | |
| self.max_right_rel_pos) | |
| return rel_indices + self.max_left_rel_pos | |
| def forward( | |
| self, | |
| query: torch.Tensor, | |
| key: torch.Tensor, | |
| value: torch.Tensor, | |
| mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| pos_emb: torch.Tensor = torch.empty(0), | |
| cache: T_CACHE = (torch.zeros((0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)) | |
| ) -> Tuple[torch.Tensor, T_CACHE]: | |
| del pos_emb | |
| q, k, v = self.forward_qkv(query, key, value) | |
| k, v, new_cache = self._update_kv_and_cache(k, v, cache) | |
| rel_k = self.rel_k_embed(self._relative_indices(k)) # (t2, t2, d_k) | |
| rel_k = rel_k[-q.size(2):] | |
| rel_att_weights = torch.einsum("bhld,lrd->bhlr", q, rel_k) | |
| if not self.use_sdpa: | |
| scores = (torch.matmul(q, k.transpose(-2, -1)) + | |
| rel_att_weights) / math.sqrt(self.d_k) | |
| return self.forward_attention(v, scores, mask), new_cache | |
| else: | |
| # NOTE(Mddct): we need mask bias, not boolean mask | |
| assert mask.dtype != torch.bool | |
| mask = mask.unsqueeze(1) | |
| # matrix_bd as a mask bias | |
| mask = (rel_att_weights + mask) / math.sqrt(self.d_k) | |
| output = torch.nn.functional.scaled_dot_product_attention( | |
| q, | |
| k, | |
| v, | |
| attn_mask=mask, | |
| dropout_p=self.dropout_rate, | |
| scale=1 / math.sqrt(self.d_k), | |
| ) | |
| output = (output.transpose(1, 2).contiguous().view( | |
| query.size(0), -1, | |
| self.h * self.d_k)) # (batch, time1, d_model) | |
| return self.linear_out(output), new_cache | |
| class RopeMultiHeadedAttention(MultiHeadedAttention): | |
| def __init__(self, | |
| n_head: int, | |
| n_feat: int, | |
| dropout_rate: float, | |
| query_bias: bool = True, | |
| key_bias: bool = True, | |
| value_bias: bool = True, | |
| use_sdpa: bool = False, | |
| n_kv_head: Optional[int] = None, | |
| head_dim: Optional[int] = None, | |
| style='google'): | |
| super().__init__(n_head, n_feat, dropout_rate, query_bias, key_bias, | |
| value_bias, use_sdpa, n_kv_head, head_dim) | |
| self.style = style | |
| def forward( | |
| self, | |
| query: torch.Tensor, | |
| key: torch.Tensor, | |
| value: torch.Tensor, | |
| mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| pos_emb: torch.Tensor = torch.empty(0), | |
| cache: T_CACHE = (torch.zeros((0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)) | |
| ) -> Tuple[torch.Tensor, T_CACHE]: | |
| """Compute rope scaled dot product attention. | |
| Args: | |
| query (torch.Tensor): Query tensor (#batch, time1, size). | |
| key (torch.Tensor): Key tensor (#batch, time2, size). | |
| value (torch.Tensor): Value tensor (#batch, time2, size). | |
| mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
| (#batch, time1, time2). | |
| 1.When applying cross attention between decoder and encoder, | |
| the batch padding mask for input is in (#batch, 1, T) shape. | |
| 2.When applying self attention of encoder, | |
| the mask is in (#batch, T, T) shape. | |
| 3.When applying self attention of decoder, | |
| the mask is in (#batch, L, L) shape. | |
| 4.If the different position in decoder see different block | |
| of the encoder, such as Mocha, the passed in mask could be | |
| in (#batch, L, T) shape. But there is no such case in current | |
| Wenet. | |
| cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), | |
| where `cache_t == chunk_size * num_decoding_left_chunks` | |
| and `head * d_k == size` | |
| Returns: | |
| torch.Tensor: Output tensor (#batch, time1, d_model). | |
| torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) | |
| where `cache_t == chunk_size * num_decoding_left_chunks` | |
| and `head * d_k == size` | |
| """ | |
| q = self._forward_linearx('query', query, head_first=False) | |
| k = self._forward_linearx('key', key, head_first=False) | |
| v = self._forward_linearx('value', value, head_first=False) | |
| # NOTE(Mddct): In order to make the code easier to read, | |
| # these two lines are not placed in MultiHeadedAttention. | |
| q = WENET_APPLY_ROTARY_EMB[self.style](q, pos_emb) | |
| k = WENET_APPLY_ROTARY_EMB[self.style](k, pos_emb) | |
| k, v, new_cache = self._update_kv_and_cache(k, | |
| v, | |
| cache, | |
| head_first=False) | |
| q = q.transpose(1, 2) | |
| k = k.transpose(1, 2) | |
| v = v.transpose(1, 2) | |
| if not self.use_sdpa: | |
| scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) | |
| return self.forward_attention(v, scores, mask), new_cache | |
| else: | |
| output = torch.nn.functional.scaled_dot_product_attention( | |
| q, | |
| k, | |
| v, | |
| attn_mask=mask.unsqueeze(1), | |
| dropout_p=self.dropout_rate, | |
| scale=1 / math.sqrt(self.d_k), | |
| ) | |
| output = (output.transpose(1, 2).contiguous().view( | |
| query.size(0), -1, | |
| self.h * self.d_k)) # (batch, time1, d_model) | |
| return self.linear_out(output), new_cache | |