Spaces:
Runtime error
Runtime error
| # Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import logging | |
| import os | |
| import re | |
| import yaml | |
| import torch | |
| from collections import OrderedDict | |
| import datetime | |
| def load_checkpoint(model: torch.nn.Module, path: str) -> dict: | |
| rank = int(os.environ.get('RANK', 0)) | |
| logging.info('[Rank {}] Checkpoint: loading from checkpoint {}'.format( | |
| rank, path)) | |
| checkpoint = torch.load(path, map_location='cpu') | |
| missing_keys, unexpected_keys = model.load_state_dict(checkpoint, | |
| strict=False) | |
| if rank == 0: | |
| for key in missing_keys: | |
| logging.info("missing tensor: {}".format(key)) | |
| for key in unexpected_keys: | |
| logging.info("unexpected tensor: {}".format(key)) | |
| info_path = re.sub('.pt$', '.yaml', path) | |
| configs = {} | |
| if os.path.exists(info_path): | |
| with open(info_path, 'r') as fin: | |
| configs = yaml.load(fin, Loader=yaml.FullLoader) | |
| if configs is None: | |
| configs = {} | |
| return configs | |
| def save_state_dict_and_infos(state_dict, path: str, infos=None): | |
| rank = int(os.environ.get('RANK', 0)) | |
| logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format( | |
| rank, path)) | |
| torch.save(state_dict, path) | |
| info_path = re.sub('.pt$', '.yaml', path) | |
| if infos is None: | |
| infos = {} | |
| infos['save_time'] = datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S') | |
| with open(info_path, 'w') as fout: | |
| data = yaml.dump(infos) | |
| fout.write(data) | |
| def save_checkpoint(model: torch.nn.Module, path: str, infos=None): | |
| ''' | |
| Args: | |
| infos (dict or None): any info you want to save. | |
| ''' | |
| if isinstance(model, torch.nn.DataParallel): | |
| state_dict = model.module.state_dict() | |
| elif isinstance(model, torch.nn.parallel.DistributedDataParallel): | |
| state_dict = model.module.state_dict() | |
| else: | |
| state_dict = model.state_dict() | |
| save_state_dict_and_infos(state_dict, path, infos) | |
| def filter_modules(model_state_dict, modules): | |
| rank = int(os.environ.get('RANK', 0)) | |
| new_mods = [] | |
| incorrect_mods = [] | |
| mods_model = model_state_dict.keys() | |
| for mod in modules: | |
| if any(key.startswith(mod) for key in mods_model): | |
| new_mods += [mod] | |
| else: | |
| incorrect_mods += [mod] | |
| if incorrect_mods and rank == 0: | |
| logging.warning( | |
| "module(s) %s don't match or (partially match) " | |
| "available modules in model.", | |
| incorrect_mods, | |
| ) | |
| logging.warning("for information, the existing modules in model are:") | |
| logging.warning("%s", mods_model) | |
| return new_mods | |
| def load_trained_modules(model: torch.nn.Module, args: None): | |
| # Load encoder modules with pre-trained model(s). | |
| enc_model_path = args.enc_init | |
| enc_modules = args.enc_init_mods | |
| main_state_dict = model.state_dict() | |
| logging.warning("model(s) found for pre-initialization") | |
| if os.path.isfile(enc_model_path): | |
| logging.info('Checkpoint: loading from checkpoint %s for CPU' % | |
| enc_model_path) | |
| model_state_dict = torch.load(enc_model_path, map_location='cpu') | |
| modules = filter_modules(model_state_dict, enc_modules) | |
| partial_state_dict = OrderedDict() | |
| for key, value in model_state_dict.items(): | |
| if any(key.startswith(m) for m in modules): | |
| partial_state_dict[key] = value | |
| main_state_dict.update(partial_state_dict) | |
| else: | |
| logging.warning("model was not found : %s", enc_model_path) | |
| model.load_state_dict(main_state_dict) | |
| configs = {} | |
| return configs | |