Spaces:
Runtime error
Runtime error
| # Copyright (c) 2022, Xingchen Song (sxc19@mails.tsinghua.edu.cn) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from __future__ import print_function | |
| import argparse | |
| import logging | |
| import os | |
| import copy | |
| import sys | |
| import torch | |
| import yaml | |
| import numpy as np | |
| from wenet.utils.init_model import init_model | |
| try: | |
| import onnx | |
| import onnxruntime | |
| from onnxruntime.quantization import quantize_dynamic, QuantType | |
| except ImportError: | |
| print('Please install onnx and onnxruntime!') | |
| sys.exit(1) | |
| def get_args(): | |
| parser = argparse.ArgumentParser(description='export your script model') | |
| parser.add_argument('--config', required=True, help='config file') | |
| parser.add_argument('--checkpoint', required=True, help='checkpoint model') | |
| parser.add_argument('--output_dir', required=True, help='output directory') | |
| parser.add_argument('--chunk_size', | |
| required=True, | |
| type=int, | |
| help='decoding chunk size') | |
| parser.add_argument('--num_decoding_left_chunks', | |
| required=True, | |
| type=int, | |
| help='cache chunks') | |
| parser.add_argument('--reverse_weight', | |
| default=0.5, | |
| type=float, | |
| help='reverse_weight in attention_rescoing') | |
| args = parser.parse_args() | |
| return args | |
| def to_numpy(tensor): | |
| if tensor.requires_grad: | |
| return tensor.detach().cpu().numpy() | |
| else: | |
| return tensor.cpu().numpy() | |
| def print_input_output_info(onnx_model, name, prefix="\t\t"): | |
| input_names = [node.name for node in onnx_model.graph.input] | |
| input_shapes = [[d.dim_value for d in node.type.tensor_type.shape.dim] | |
| for node in onnx_model.graph.input] | |
| output_names = [node.name for node in onnx_model.graph.output] | |
| output_shapes = [[d.dim_value for d in node.type.tensor_type.shape.dim] | |
| for node in onnx_model.graph.output] | |
| print("{}{} inputs : {}".format(prefix, name, input_names)) | |
| print("{}{} input shapes : {}".format(prefix, name, input_shapes)) | |
| print("{}{} outputs: {}".format(prefix, name, output_names)) | |
| print("{}{} output shapes : {}".format(prefix, name, output_shapes)) | |
| def export_encoder(asr_model, args): | |
| print("Stage-1: export encoder") | |
| encoder = asr_model.encoder | |
| encoder.forward = encoder.forward_chunk | |
| encoder_outpath = os.path.join(args['output_dir'], 'encoder.onnx') | |
| print("\tStage-1.1: prepare inputs for encoder") | |
| chunk = torch.randn( | |
| (args['batch'], args['decoding_window'], args['feature_size'])) | |
| offset = 0 | |
| # NOTE(xcsong): The uncertainty of `next_cache_start` only appears | |
| # in the first few chunks, this is caused by dynamic att_cache shape, i,e | |
| # (0, 0, 0, 0) for 1st chunk and (elayers, head, ?, d_k*2) for subsequent | |
| # chunks. One way to ease the ONNX export is to keep `next_cache_start` | |
| # as a fixed value. To do this, for the **first** chunk, if | |
| # left_chunks > 0, we feed real cache & real mask to the model, otherwise | |
| # fake cache & fake mask. In this way, we get: | |
| # 1. 16/-1 mode: next_cache_start == 0 for all chunks | |
| # 2. 16/4 mode: next_cache_start == chunk_size for all chunks | |
| # 3. 16/0 mode: next_cache_start == chunk_size for all chunks | |
| # 4. -1/-1 mode: next_cache_start == 0 for all chunks | |
| # NO MORE DYNAMIC CHANGES!! | |
| # | |
| # NOTE(Mddct): We retain the current design for the convenience of supporting some | |
| # inference frameworks without dynamic shapes. If you're interested in all-in-one | |
| # model that supports different chunks please see: | |
| # https://github.com/wenet-e2e/wenet/pull/1174 | |
| if args['left_chunks'] > 0: # 16/4 | |
| required_cache_size = args['chunk_size'] * args['left_chunks'] | |
| offset = required_cache_size | |
| # Real cache | |
| att_cache = torch.zeros( | |
| (args['num_blocks'], args['head'], required_cache_size, | |
| args['output_size'] // args['head'] * 2)) | |
| # Real mask | |
| att_mask = torch.ones( | |
| (args['batch'], 1, required_cache_size + args['chunk_size']), | |
| dtype=torch.bool) | |
| att_mask[:, :, :required_cache_size] = 0 | |
| elif args['left_chunks'] <= 0: # 16/-1, -1/-1, 16/0 | |
| required_cache_size = -1 if args['left_chunks'] < 0 else 0 | |
| # Fake cache | |
| att_cache = torch.zeros((args['num_blocks'], args['head'], 0, | |
| args['output_size'] // args['head'] * 2)) | |
| # Fake mask | |
| att_mask = torch.ones((0, 0, 0), dtype=torch.bool) | |
| cnn_cache = torch.zeros( | |
| (args['num_blocks'], args['batch'], args['output_size'], | |
| args['cnn_module_kernel'] - 1)) | |
| inputs = (chunk, offset, required_cache_size, att_cache, cnn_cache, | |
| att_mask) | |
| print("\t\tchunk.size(): {}\n".format(chunk.size()), | |
| "\t\toffset: {}\n".format(offset), | |
| "\t\trequired_cache: {}\n".format(required_cache_size), | |
| "\t\tatt_cache.size(): {}\n".format(att_cache.size()), | |
| "\t\tcnn_cache.size(): {}\n".format(cnn_cache.size()), | |
| "\t\tatt_mask.size(): {}\n".format(att_mask.size())) | |
| print("\tStage-1.2: torch.onnx.export") | |
| dynamic_axes = { | |
| 'chunk': { | |
| 1: 'T' | |
| }, | |
| 'att_cache': { | |
| 2: 'T_CACHE' | |
| }, | |
| 'att_mask': { | |
| 2: 'T_ADD_T_CACHE' | |
| }, | |
| 'output': { | |
| 1: 'T' | |
| }, | |
| 'r_att_cache': { | |
| 2: 'T_CACHE' | |
| }, | |
| } | |
| # NOTE(xcsong): We keep dynamic axes even if in 16/4 mode, this is | |
| # to avoid padding the last chunk (which usually contains less | |
| # frames than required). For users who want static axes, just pop | |
| # out specific axis. | |
| # if args['chunk_size'] > 0: # 16/4, 16/-1, 16/0 | |
| # dynamic_axes.pop('chunk') | |
| # dynamic_axes.pop('output') | |
| # if args['left_chunks'] >= 0: # 16/4, 16/0 | |
| # # NOTE(xsong): since we feed real cache & real mask into the | |
| # # model when left_chunks > 0, the shape of cache will never | |
| # # be changed. | |
| # dynamic_axes.pop('att_cache') | |
| # dynamic_axes.pop('r_att_cache') | |
| torch.onnx.export(encoder, | |
| inputs, | |
| encoder_outpath, | |
| opset_version=13, | |
| export_params=True, | |
| do_constant_folding=True, | |
| input_names=[ | |
| 'chunk', 'offset', 'required_cache_size', | |
| 'att_cache', 'cnn_cache', 'att_mask' | |
| ], | |
| output_names=['output', 'r_att_cache', 'r_cnn_cache'], | |
| dynamic_axes=dynamic_axes, | |
| verbose=False) | |
| onnx_encoder = onnx.load(encoder_outpath) | |
| for (k, v) in args.items(): | |
| meta = onnx_encoder.metadata_props.add() | |
| meta.key, meta.value = str(k), str(v) | |
| onnx.checker.check_model(onnx_encoder) | |
| onnx.helper.printable_graph(onnx_encoder.graph) | |
| # NOTE(xcsong): to add those metadatas we need to reopen | |
| # the file and resave it. | |
| onnx.save(onnx_encoder, encoder_outpath) | |
| print_input_output_info(onnx_encoder, "onnx_encoder") | |
| # Dynamic quantization | |
| model_fp32 = encoder_outpath | |
| model_quant = os.path.join(args['output_dir'], 'encoder.quant.onnx') | |
| quantize_dynamic(model_fp32, model_quant, weight_type=QuantType.QUInt8) | |
| print('\t\tExport onnx_encoder, done! see {}'.format(encoder_outpath)) | |
| print("\tStage-1.3: check onnx_encoder and torch_encoder") | |
| torch_output = [] | |
| torch_chunk = copy.deepcopy(chunk) | |
| torch_offset = copy.deepcopy(offset) | |
| torch_required_cache_size = copy.deepcopy(required_cache_size) | |
| torch_att_cache = copy.deepcopy(att_cache) | |
| torch_cnn_cache = copy.deepcopy(cnn_cache) | |
| torch_att_mask = copy.deepcopy(att_mask) | |
| for i in range(10): | |
| print("\t\ttorch chunk-{}: {}, offset: {}, att_cache: {}," | |
| " cnn_cache: {}, att_mask: {}".format( | |
| i, list(torch_chunk.size()), torch_offset, | |
| list(torch_att_cache.size()), list(torch_cnn_cache.size()), | |
| list(torch_att_mask.size()))) | |
| # NOTE(xsong): att_mask of the first few batches need changes if | |
| # we use 16/4 mode. | |
| if args['left_chunks'] > 0: # 16/4 | |
| torch_att_mask[:, :, -(args['chunk_size'] * (i + 1)):] = 1 | |
| out, torch_att_cache, torch_cnn_cache = encoder( | |
| torch_chunk, torch_offset, torch_required_cache_size, | |
| torch_att_cache, torch_cnn_cache, torch_att_mask) | |
| torch_output.append(out) | |
| torch_offset += out.size(1) | |
| torch_output = torch.cat(torch_output, dim=1) | |
| onnx_output = [] | |
| onnx_chunk = to_numpy(chunk) | |
| onnx_offset = np.array((offset)).astype(np.int64) | |
| onnx_required_cache_size = np.array((required_cache_size)).astype(np.int64) | |
| onnx_att_cache = to_numpy(att_cache) | |
| onnx_cnn_cache = to_numpy(cnn_cache) | |
| onnx_att_mask = to_numpy(att_mask) | |
| ort_session = onnxruntime.InferenceSession( | |
| encoder_outpath, providers=['CPUExecutionProvider']) | |
| input_names = [node.name for node in onnx_encoder.graph.input] | |
| for i in range(10): | |
| print("\t\tonnx chunk-{}: {}, offset: {}, att_cache: {}," | |
| " cnn_cache: {}, att_mask: {}".format(i, onnx_chunk.shape, | |
| onnx_offset, | |
| onnx_att_cache.shape, | |
| onnx_cnn_cache.shape, | |
| onnx_att_mask.shape)) | |
| # NOTE(xsong): att_mask of the first few batches need changes if | |
| # we use 16/4 mode. | |
| if args['left_chunks'] > 0: # 16/4 | |
| onnx_att_mask[:, :, -(args['chunk_size'] * (i + 1)):] = 1 | |
| ort_inputs = { | |
| 'chunk': onnx_chunk, | |
| 'offset': onnx_offset, | |
| 'required_cache_size': onnx_required_cache_size, | |
| 'att_cache': onnx_att_cache, | |
| 'cnn_cache': onnx_cnn_cache, | |
| 'att_mask': onnx_att_mask | |
| } | |
| # NOTE(xcsong): If we use 16/-1, -1/-1 or 16/0 mode, `next_cache_start` | |
| # will be hardcoded to 0 or chunk_size by ONNX, thus | |
| # required_cache_size and att_mask are no more needed and they will | |
| # be removed by ONNX automatically. | |
| for k in list(ort_inputs): | |
| if k not in input_names: | |
| ort_inputs.pop(k) | |
| ort_outs = ort_session.run(None, ort_inputs) | |
| onnx_att_cache, onnx_cnn_cache = ort_outs[1], ort_outs[2] | |
| onnx_output.append(ort_outs[0]) | |
| onnx_offset += ort_outs[0].shape[1] | |
| onnx_output = np.concatenate(onnx_output, axis=1) | |
| np.testing.assert_allclose(to_numpy(torch_output), | |
| onnx_output, | |
| rtol=1e-03, | |
| atol=1e-05) | |
| meta = ort_session.get_modelmeta() | |
| print("\t\tcustom_metadata_map={}".format(meta.custom_metadata_map)) | |
| print("\t\tCheck onnx_encoder, pass!") | |
| def export_ctc(asr_model, args): | |
| print("Stage-2: export ctc") | |
| ctc = asr_model.ctc | |
| ctc.forward = ctc.log_softmax | |
| ctc_outpath = os.path.join(args['output_dir'], 'ctc.onnx') | |
| print("\tStage-2.1: prepare inputs for ctc") | |
| hidden = torch.randn( | |
| (args['batch'], args['chunk_size'] if args['chunk_size'] > 0 else 16, | |
| args['output_size'])) | |
| print("\tStage-2.2: torch.onnx.export") | |
| dynamic_axes = {'hidden': {1: 'T'}, 'probs': {1: 'T'}} | |
| torch.onnx.export(ctc, | |
| hidden, | |
| ctc_outpath, | |
| opset_version=13, | |
| export_params=True, | |
| do_constant_folding=True, | |
| input_names=['hidden'], | |
| output_names=['probs'], | |
| dynamic_axes=dynamic_axes, | |
| verbose=False) | |
| onnx_ctc = onnx.load(ctc_outpath) | |
| for (k, v) in args.items(): | |
| meta = onnx_ctc.metadata_props.add() | |
| meta.key, meta.value = str(k), str(v) | |
| onnx.checker.check_model(onnx_ctc) | |
| onnx.helper.printable_graph(onnx_ctc.graph) | |
| onnx.save(onnx_ctc, ctc_outpath) | |
| print_input_output_info(onnx_ctc, "onnx_ctc") | |
| # Dynamic quantization | |
| model_fp32 = ctc_outpath | |
| model_quant = os.path.join(args['output_dir'], 'ctc.quant.onnx') | |
| quantize_dynamic(model_fp32, model_quant, weight_type=QuantType.QUInt8) | |
| print('\t\tExport onnx_ctc, done! see {}'.format(ctc_outpath)) | |
| print("\tStage-2.3: check onnx_ctc and torch_ctc") | |
| torch_output = ctc(hidden) | |
| ort_session = onnxruntime.InferenceSession( | |
| ctc_outpath, providers=['CPUExecutionProvider']) | |
| onnx_output = ort_session.run(None, {'hidden': to_numpy(hidden)}) | |
| np.testing.assert_allclose(to_numpy(torch_output), | |
| onnx_output[0], | |
| rtol=1e-03, | |
| atol=1e-05) | |
| print("\t\tCheck onnx_ctc, pass!") | |
| def export_decoder(asr_model, args): | |
| print("Stage-3: export decoder") | |
| decoder = asr_model | |
| # NOTE(lzhin): parameters of encoder will be automatically removed | |
| # since they are not used during rescoring. | |
| decoder.forward = decoder.forward_attention_decoder | |
| decoder_outpath = os.path.join(args['output_dir'], 'decoder.onnx') | |
| print("\tStage-3.1: prepare inputs for decoder") | |
| # hardcode time->200 nbest->10 len->20, they are dynamic axes. | |
| encoder_out = torch.randn((1, 200, args['output_size'])) | |
| hyps = torch.randint(low=0, high=args['vocab_size'], size=[10, 20]) | |
| hyps[:, 0] = args['vocab_size'] - 1 # <sos> | |
| hyps_lens = torch.randint(low=15, high=21, size=[10]) | |
| print("\tStage-3.2: torch.onnx.export") | |
| dynamic_axes = { | |
| 'hyps': { | |
| 0: 'NBEST', | |
| 1: 'L' | |
| }, | |
| 'hyps_lens': { | |
| 0: 'NBEST' | |
| }, | |
| 'encoder_out': { | |
| 1: 'T' | |
| }, | |
| 'score': { | |
| 0: 'NBEST', | |
| 1: 'L' | |
| }, | |
| 'r_score': { | |
| 0: 'NBEST', | |
| 1: 'L' | |
| } | |
| } | |
| inputs = (hyps, hyps_lens, encoder_out, args['reverse_weight']) | |
| torch.onnx.export( | |
| decoder, | |
| inputs, | |
| decoder_outpath, | |
| opset_version=13, | |
| export_params=True, | |
| do_constant_folding=True, | |
| input_names=['hyps', 'hyps_lens', 'encoder_out', 'reverse_weight'], | |
| output_names=['score', 'r_score'], | |
| dynamic_axes=dynamic_axes, | |
| verbose=False) | |
| onnx_decoder = onnx.load(decoder_outpath) | |
| for (k, v) in args.items(): | |
| meta = onnx_decoder.metadata_props.add() | |
| meta.key, meta.value = str(k), str(v) | |
| onnx.checker.check_model(onnx_decoder) | |
| onnx.helper.printable_graph(onnx_decoder.graph) | |
| onnx.save(onnx_decoder, decoder_outpath) | |
| print_input_output_info(onnx_decoder, "onnx_decoder") | |
| model_fp32 = decoder_outpath | |
| model_quant = os.path.join(args['output_dir'], 'decoder.quant.onnx') | |
| quantize_dynamic(model_fp32, model_quant, weight_type=QuantType.QUInt8) | |
| print('\t\tExport onnx_decoder, done! see {}'.format(decoder_outpath)) | |
| print("\tStage-3.3: check onnx_decoder and torch_decoder") | |
| torch_score, torch_r_score = decoder(hyps, hyps_lens, encoder_out, | |
| args['reverse_weight']) | |
| ort_session = onnxruntime.InferenceSession( | |
| decoder_outpath, providers=['CPUExecutionProvider']) | |
| input_names = [node.name for node in onnx_decoder.graph.input] | |
| ort_inputs = { | |
| 'hyps': to_numpy(hyps), | |
| 'hyps_lens': to_numpy(hyps_lens), | |
| 'encoder_out': to_numpy(encoder_out), | |
| 'reverse_weight': np.array((args['reverse_weight'])), | |
| } | |
| for k in list(ort_inputs): | |
| if k not in input_names: | |
| ort_inputs.pop(k) | |
| onnx_output = ort_session.run(None, ort_inputs) | |
| np.testing.assert_allclose(to_numpy(torch_score), | |
| onnx_output[0], | |
| rtol=1e-03, | |
| atol=1e-05) | |
| if args['is_bidirectional_decoder'] and args['reverse_weight'] > 0.0: | |
| np.testing.assert_allclose(to_numpy(torch_r_score), | |
| onnx_output[1], | |
| rtol=1e-03, | |
| atol=1e-05) | |
| print("\t\tCheck onnx_decoder, pass!") | |
| def main(): | |
| torch.manual_seed(777) | |
| args = get_args() | |
| logging.basicConfig(level=logging.DEBUG, | |
| format='%(asctime)s %(levelname)s %(message)s') | |
| output_dir = args.output_dir | |
| os.system("mkdir -p " + output_dir) | |
| os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | |
| with open(args.config, 'r') as fin: | |
| configs = yaml.load(fin, Loader=yaml.FullLoader) | |
| model, configs = init_model(args, configs) | |
| model.eval() | |
| print(model) | |
| arguments = {} | |
| arguments['output_dir'] = output_dir | |
| arguments['batch'] = 1 | |
| arguments['chunk_size'] = args.chunk_size | |
| arguments['left_chunks'] = args.num_decoding_left_chunks | |
| arguments['reverse_weight'] = args.reverse_weight | |
| arguments['output_size'] = configs['encoder_conf']['output_size'] | |
| arguments['num_blocks'] = configs['encoder_conf']['num_blocks'] | |
| arguments['cnn_module_kernel'] = configs['encoder_conf'].get( | |
| 'cnn_module_kernel', 1) | |
| arguments['head'] = configs['encoder_conf']['attention_heads'] | |
| arguments['feature_size'] = configs['input_dim'] | |
| arguments['vocab_size'] = configs['output_dim'] | |
| # NOTE(xcsong): if chunk_size == -1, hardcode to 67 | |
| arguments['decoding_window'] = (args.chunk_size - 1) * \ | |
| model.encoder.embed.subsampling_rate + \ | |
| model.encoder.embed.right_context + 1 if args.chunk_size > 0 else 67 | |
| arguments['encoder'] = configs['encoder'] | |
| arguments['decoder'] = configs['decoder'] | |
| arguments['subsampling_rate'] = model.subsampling_rate() | |
| arguments['right_context'] = model.right_context() | |
| arguments['sos_symbol'] = model.sos_symbol() | |
| arguments['eos_symbol'] = model.eos_symbol() | |
| arguments['is_bidirectional_decoder'] = 1 \ | |
| if model.is_bidirectional_decoder() else 0 | |
| # NOTE(xcsong): Please note that -1/-1 means non-streaming model! It is | |
| # not a [16/4 16/-1 16/0] all-in-one model and it should not be used in | |
| # streaming mode (i.e., setting chunk_size=16 in `decoder_main`). If you | |
| # want to use 16/-1 or any other streaming mode in `decoder_main`, | |
| # please export onnx in the same config. | |
| if arguments['left_chunks'] > 0: | |
| assert arguments['chunk_size'] > 0 # -1/4 not supported | |
| export_encoder(model, arguments) | |
| export_ctc(model, arguments) | |
| export_decoder(model, arguments) | |
| if __name__ == '__main__': | |
| main() | |