Spaces:
Runtime error
Runtime error
| from typing import Tuple, Union | |
| import torch | |
| from wenet.transformer.subsampling import BaseSubsampling | |
| class IdentitySubsampling(BaseSubsampling): | |
| """ Paraformer subsampling | |
| """ | |
| def __init__(self, idim: int, odim: int, dropout_rate: float, | |
| pos_enc_class: torch.nn.Module): | |
| super().__init__() | |
| _, _ = idim, odim | |
| self.right_context = 6 | |
| self.subsampling_rate = 6 | |
| self.pos_enc = pos_enc_class | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| x_mask: torch.Tensor, | |
| offset: Union[torch.Tensor, int] = 0 | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """Subsample x. | |
| Args: | |
| x (torch.Tensor): Input tensor (#batch, time, idim). | |
| x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
| Returns: | |
| torch.Tensor: Subsampled tensor (#batch, time', odim), | |
| where time' = time. | |
| torch.Tensor: Subsampled mask (#batch, 1, time'), | |
| where time' = time | |
| torch.Tensor: positional encoding | |
| """ | |
| # NOTE(Mddct): Paraformer starts from 1 | |
| if isinstance(offset, torch.Tensor): | |
| offset = torch.add(offset, 1) | |
| else: | |
| offset = offset + 1 | |
| x, pos_emb = self.pos_enc(x, offset) | |
| return x, pos_emb, x_mask | |
| def position_encoding(self, offset: Union[int, torch.Tensor], | |
| size: int) -> torch.Tensor: | |
| return self.pos_enc.position_encoding(offset + 1, size) | |