Spaces:
Runtime error
Runtime error
| # Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Modified from ESPnet(https://github.com/espnet/espnet) | |
| """Positonal Encoding Module.""" | |
| import math | |
| from typing import Tuple, Union | |
| import torch | |
| import torch.nn.functional as F | |
| import numpy as np | |
| from wenet.utils.rope_utils import precompute_freqs_cis | |
| class PositionalEncoding(torch.nn.Module): | |
| """Positional encoding. | |
| :param int d_model: embedding dim | |
| :param float dropout_rate: dropout rate | |
| :param int max_len: maximum input length | |
| PE(pos, 2i) = sin(pos/(10000^(2i/dmodel))) | |
| PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel))) | |
| """ | |
| def __init__(self, | |
| d_model: int, | |
| dropout_rate: float, | |
| max_len: int = 5000, | |
| reverse: bool = False): | |
| """Construct an PositionalEncoding object.""" | |
| super().__init__() | |
| self.d_model = d_model | |
| self.xscale = math.sqrt(self.d_model) | |
| self.dropout = torch.nn.Dropout(p=dropout_rate) | |
| self.max_len = max_len | |
| pe = torch.zeros(self.max_len, self.d_model) | |
| position = torch.arange(0, self.max_len, | |
| dtype=torch.float32).unsqueeze(1) | |
| div_term = torch.exp( | |
| torch.arange(0, self.d_model, 2, dtype=torch.float32) * | |
| -(math.log(10000.0) / self.d_model)) | |
| pe[:, 0::2] = torch.sin(position * div_term) | |
| pe[:, 1::2] = torch.cos(position * div_term) | |
| pe = pe.unsqueeze(0) | |
| self.register_buffer("pe", pe) | |
| def forward(self, | |
| x: torch.Tensor, | |
| offset: Union[int, torch.Tensor] = 0) \ | |
| -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Add positional encoding. | |
| Args: | |
| x (torch.Tensor): Input. Its shape is (batch, time, ...) | |
| offset (int, torch.tensor): position offset | |
| Returns: | |
| torch.Tensor: Encoded tensor. Its shape is (batch, time, ...) | |
| torch.Tensor: for compatibility to RelPositionalEncoding | |
| """ | |
| pos_emb = self.position_encoding(offset, x.size(1), False) | |
| x = x * self.xscale + pos_emb | |
| return self.dropout(x), self.dropout(pos_emb) | |
| def position_encoding(self, | |
| offset: Union[int, torch.Tensor], | |
| size: int, | |
| apply_dropout: bool = True) -> torch.Tensor: | |
| """ For getting encoding in a streaming fashion | |
| Attention!!!!! | |
| we apply dropout only once at the whole utterance level in a none | |
| streaming way, but will call this function several times with | |
| increasing input size in a streaming scenario, so the dropout will | |
| be applied several times. | |
| Args: | |
| offset (int or torch.tensor): start offset | |
| size (int): required size of position encoding | |
| Returns: | |
| torch.Tensor: Corresponding encoding | |
| """ | |
| # How to subscript a Union type: | |
| # https://github.com/pytorch/pytorch/issues/69434 | |
| if isinstance(offset, int): | |
| assert offset + size <= self.max_len | |
| pos_emb = self.pe[:, offset:offset + size] | |
| elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar | |
| assert offset + size <= self.max_len | |
| pos_emb = self.pe[:, offset:offset + size] | |
| else: # for batched streaming decoding on GPU | |
| assert torch.max(offset) + size <= self.max_len | |
| index = offset.unsqueeze(1) + \ | |
| torch.arange(0, size).to(offset.device) # B X T | |
| flag = index > 0 | |
| # remove negative offset | |
| index = index * flag | |
| pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model | |
| if apply_dropout: | |
| pos_emb = self.dropout(pos_emb) | |
| return pos_emb | |
| class RelPositionalEncoding(PositionalEncoding): | |
| """Relative positional encoding module. | |
| See : Appendix B in https://arxiv.org/abs/1901.02860 | |
| Args: | |
| d_model (int): Embedding dimension. | |
| dropout_rate (float): Dropout rate. | |
| max_len (int): Maximum input length. | |
| """ | |
| def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000): | |
| """Initialize class.""" | |
| super().__init__(d_model, dropout_rate, max_len, reverse=True) | |
| def forward(self, | |
| x: torch.Tensor, | |
| offset: Union[int, torch.Tensor] = 0) \ | |
| -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Compute positional encoding. | |
| Args: | |
| x (torch.Tensor): Input tensor (batch, time, `*`). | |
| Returns: | |
| torch.Tensor: Encoded tensor (batch, time, `*`). | |
| torch.Tensor: Positional embedding tensor (1, time, `*`). | |
| """ | |
| x = x * self.xscale | |
| pos_emb = self.position_encoding(offset, x.size(1), False) | |
| return self.dropout(x), self.dropout(pos_emb) | |
| class WhisperPositionalEncoding(PositionalEncoding): | |
| """ Sinusoids position encoding used in openai-whisper.encoder | |
| """ | |
| def __init__(self, d_model: int, dropout_rate: float, max_len: int = 1500): | |
| super().__init__(d_model, dropout_rate, max_len) | |
| self.xscale = 1.0 | |
| log_timescale_increment = np.log(10000) / (d_model // 2 - 1) | |
| inv_timescales = torch.exp(-log_timescale_increment * | |
| torch.arange(d_model // 2)) | |
| scaled_time = torch.arange(max_len)[:, np.newaxis] * \ | |
| inv_timescales[np.newaxis, :] | |
| pe = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) | |
| delattr(self, "pe") | |
| self.register_buffer("pe", pe.unsqueeze(0)) | |
| class LearnablePositionalEncoding(PositionalEncoding): | |
| """ Learnable position encoding used in openai-whisper.decoder | |
| """ | |
| def __init__(self, d_model: int, dropout_rate: float, max_len: int = 448): | |
| super().__init__(d_model, dropout_rate, max_len) | |
| # NOTE(xcsong): overwrite self.pe & self.xscale | |
| self.pe = torch.nn.Parameter(torch.empty(1, max_len, d_model)) | |
| self.xscale = 1.0 | |
| class NoPositionalEncoding(torch.nn.Module): | |
| """ No position encoding | |
| """ | |
| def __init__(self, d_model: int, dropout_rate: float): | |
| super().__init__() | |
| self.d_model = d_model | |
| self.dropout = torch.nn.Dropout(p=dropout_rate) | |
| def forward(self, | |
| x: torch.Tensor, | |
| offset: Union[int, torch.Tensor] = 0) \ | |
| -> Tuple[torch.Tensor, torch.Tensor]: | |
| """ Just return zero vector for interface compatibility | |
| """ | |
| pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device) | |
| return self.dropout(x), pos_emb | |
| def position_encoding(self, offset: Union[int, torch.Tensor], | |
| size: int) -> torch.Tensor: | |
| return torch.zeros(1, size, self.d_model) | |
| class RopePositionalEncoding(PositionalEncoding): | |
| def __init__(self, | |
| d_model: int, | |
| head_dim: int, | |
| dropout_rate: float, | |
| max_len: int = 1500, | |
| rope_theta=10000.0, | |
| scale: bool = True): | |
| super().__init__(d_model, dropout_rate=dropout_rate, max_len=max_len) | |
| delattr(self, 'pe') | |
| self.max_len = max_len * 2 | |
| pe = precompute_freqs_cis(head_dim, self.max_len, rope_theta) | |
| self.register_buffer("pe", torch.view_as_real(pe.unsqueeze(0))) | |
| self.dropout_rate = dropout_rate | |
| self.scale = scale | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| offset: Union[int, | |
| torch.Tensor] = 0) -> Tuple[torch.Tensor, torch.Tensor]: | |
| pos_emb = self.position_encoding(offset, x.size(1), True) | |
| pos_emb = pos_emb.unsqueeze(2) # [1,seq, 1, head_dim//2] | |
| # NOTE(Mddct): some model don't scale | |
| if self.scale: | |
| x = x * self.xscale | |
| return self.dropout(x), pos_emb | |
| def position_encoding(self, | |
| offset: Union[int, torch.Tensor], | |
| size: int, | |
| apply_dropout: bool = True) -> torch.Tensor: | |
| pe = torch.view_as_complex(self.pe) | |
| if isinstance(offset, int): | |
| assert offset + size <= self.max_len | |
| pos_emb = pe[:, offset:offset + size] | |
| else: | |
| assert torch.max(offset) + size <= self.max_len | |
| index = offset.unsqueeze(1) + torch.arange(0, size).to( | |
| offset.device) # B X T | |
| flag = index > 0 | |
| # remove negative offset | |
| index = index * flag | |
| pos_emb = F.embedding(index, pe[0]) # B X T X head_dim//2 | |
| if apply_dropout: | |
| # NOTE(Mddct) dropout don't suuport complex float for pos_emb | |
| pos_emb = self.dropout_complex(pos_emb) | |
| return pos_emb | |
| def dropout_complex(self, x): | |
| mask = torch.nn.functional.dropout( | |
| torch.ones_like(x.real), | |
| training=self.training, | |
| p=self.dropout_rate, | |
| ) | |
| return x * mask | |